
www.manaraa.com

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2012 

Measuring Effectiveness of Address Schemes for AS-level Graphs Measuring Effectiveness of Address Schemes for AS-level Graphs 

Yinfang Zhuang 
University of Kentucky, yzhua3@uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Zhuang, Yinfang, "Measuring Effectiveness of Address Schemes for AS-level Graphs" (2012). Theses and 
Dissertations--Computer Science. 8. 
https://uknowledge.uky.edu/cs_etds/8 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


www.manaraa.com

STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained and attached hereto needed written 

permission statements(s) from the owner(s) of each third-party copyrighted matter to be 

included in my work, allowing electronic distribution (if such use is not permitted by the fair use 

doctrine). 

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive 

and make accessible my work in whole or in part in all forms of media, now or hereafter known. 

I agree that the document mentioned above may be made available immediately for worldwide 

access unless a preapproved embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s dissertation 

including all changes required by the advisory committee. The undersigned agree to abide by 

the statements above. 

Yinfang Zhuang, Student 

Dr. Kenneth Calvert, Major Professor 

Dr. Raphael Finkel, Director of Graduate Studies 



www.manaraa.com

Measuring Effectiveness of Address Schemes for AS-level Graphs

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Yinfang Zhuang

Lexington, Kentucky

Director: Dr. Ken Calvert, Professor of Computer Science

Lexington, Kentucky

2012

Copyright c© Yinfang Zhuang 2012



www.manaraa.com

ABSTRACT OF DISSERTATION

Measuring Effectiveness of Address Schemes for AS-level Graphs

This dissertation presents measures of efficiency and locality for Internet addressing schemes.

Historically speaking, many issues, faced by the Internet, have been solved just in time,
to make the Internet just work [Han06]. Consensus, however, has been reached that today’s
Internet routing and addressing system is facing serious scaling problems: multi-homing
which causes finer granularity of routing policies and finer control to realize various traffic
engineering requirements, an increased demand for provider-independent prefix allocations
which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and
ever-increasing Internet user population and mobile edge devices. As a result, the DFZ
routing table is again growing at an exponential rate.

Hierarchical, topology-based addressing has long been considered crucial to routing and
forwarding scalability. Recently, however, a number of research efforts are considering al-
ternatives to this traditional approach. With the goal of informing such research, we inves-
tigated the efficiency of address assignment in the existing (IPv4) Internet. In particular,
we ask the question: “how can we measure the locality of an address scheme given an input
AS-level graph?”

To do so, we first define a notion of efficiency or locality based on the average number of
bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from
“optimal" the current Internet is, we assign prefixes to ASes “from scratch" in a manner that
preserves observed semantics, using three increasingly strict definitions of equivalence.

Next we propose another metric that in some sense quantifies the “efficiency" of the
labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness
of the metric by applying it to a series of address schemes with increasing randomness given
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an input AS-level graph. After that we apply the metric to the current Internet address
scheme across years and compare the results with those of compact routing schemes.
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1 | Introduction

This dissertation presents measures of efficiency and locality for Internet addressing schemes.

A (computer) network is “a collection of computers and other hardware components

interconnected by communication channels that allow sharing of resources and informa-

tion.” [Wik12] An address specifies at which part of the network some resource or a set of

resources is located; a route specifies the information needed to forward a piece of informa-

tion across the network to the destination address; routing specifies how to maintain the

connectivity information to the addresses of all the end hosts in the network. The Internet

is one such example. Hierarchical addresses (conforming to the underlying topology) are

used in the current Internet to both identify end hosts and indicate their locations. We will

talk about hierarchical addresses in Section 2.1

Historically speaking, many issues faced by the Internet have been solved just in time

to make the Internet just work [Han06]. Consensus, however, has been reached that today’s

Internet routing and addressing system is facing serious scaling problems: Multihoming,

which helps realize protection from single-point failures, load balancing of incoming and

outgoing traffic, and other policies; an increased demand for provider-independent prefix

allocations that injects unaggregatable prefixes into the Default Free Zone (DFZ) routing

table (also referred to as the DFZ RIB); and an ever-increasing population of Internet users

as well as mobile edge devices—all drive the growth of the DFZ RIB size at an alarming

rate [MZF07]. Some of the Internet Service Providers (ISPs) check this growth by refusing

to propagate prefixes with lengths greater than 24, which has an adverse effect upon the

reachability of those prefixes and is not widely used [Hus01b]. Having many destinations in

a routing system, in combination with multiple paths per destination, increases the demand

on routing processing for route selection and route filtering, and requires large memory space

on routers. T. Li [MZF07] has pointed out that Moore’s Law does not hold for high-end

routers in terms of costs. The existence of many routes also increases the chances for the

repeated advertizements and withdrawals (or flapping) of a destination to occur. Though

route flap suppressing (or damping) [VCG98,MGVK02,LABJ01] has been widely deployed,

1



www.manaraa.com

the routing convergence becomes a more significant problem than before. The advent of

new Internet Protocol version 6 (IPv6) and its larger address space can worsen the current

situation further, in the absence of any working scalable routing mechanism.

Y. Rekhter pointed out that addressing should be congruent with the underlying topology

so that information aggregation (abstraction) can be effectively performed to achieve the

scalability of routing systems. Inspired by this so-called “Rekhter’s Law”, this thesis explores

the notion of locality—the idea that addresses in a network have some relation to location

in the network topology. The ultimate goal is to come up with a rigorous definition that

will allow us to quantify the efficiency of a given network instance (i.e., an assignment of

addresses to nodes in a graph). The definition would admit discussions of optimal instances,

so that, for example, we could quantify how far from optimal the current Internet is.

To achieve this goal we first study locality and optimality in the context of the current

Internet. We want to address the following questions: How much locality is there in the

assignment of prefixes to routing domains (we will talk about domains in Section 2.2),

either equal to or part of administrative domains, in the current Internet? How far from

optimal is the current assignment? In other words, how much is hierarchical addressing

buying us (at the inter-domain level), and how much could be gained by a from-scratch

assignment of prefixes (if it were possible to do so)? Answering these questions requires

precise definitions of both locality and optimality of prefix assignment. In the context of a

particular routing/forwarding protocol, some of the information aggregation is not allowed

by the routing policies of that routing protocol (we will talk about the routing policies of

one particular routing protocol and how they prevent certain information aggregation from

occurring in Section 2.3). We stress that we are not proposing that addresses in the Internet

actually be reassigned to improve locality. We are simply interested in the above questions as

a way of assessing the importance of topology-based addressing for the scalability of routing

systems at the interdomain level, and in particular in whether topology-based addressing is

a necessary component of any future internetwork architecture. Here we are mainly focused

on unicast addressing, as that is the only kind of addesses for which topology information

is usually encoded.

Next we move on to study locality and optimality in a more general sense—that is,

independent of any particular routing/forwarding mechanism. To be specific, given a finite

undirected graph G = (V,E), together with a labeling function L : V → {g | g ∈ Σ∗} where

Σ is an alphabet, we want to compute a quantity Q(G,L) that in some sense quantifies

efficiency (or, conversely, cost) of the labeling. For simplicity, we assume Σ = {0, 1}.

2
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Our main contributions can be summarized as follows:

1. We define a precise notion of cost of a prefix assignment (an inverse notion of locality)

of the Internet. We focus on the savings due to abstraction in the control plane1. In

particular, our measure is based on the bits exchanged by routing protocol (BGP)

instances to advertize destinations. Using Route Views [UO], Réseaux IP Européens

Network Coordination Centre’s Routing Information Service (RIPE NCC’s RIS) [RIP],

and Internet Routing Registries (IRR) [IRR], we measure the cost of the Internet’s

actual address assignment in terms of our metric. We attempt to quantify how close

to “optimal" the Internet operates in this respect. We do this by constructing alter-

native assignments of prefixes to autonomous systems from scratch, in a manner that

preserves the semantics of addressing.

2. We propose another metric that in some sense quantifies the efficiency of the labeling

and is independent of forwarding/routing mechanisms. We validate the effectiveness

of the metric by applying it to a series of instances that we expect to have decreasing

locality (according to our intuitive notion) for a given input interdomain-level graph.

After that, we apply the metric to the current Internet address scheme to see how

the locality is changing across years. Finally, we compare the locality of the address

scheme of the Thorup and Zwick (TZ) stretch-3 compact routing mechanism [TZ01]

with that of the Internet, which serves as evidence for the efficiency of the TZ stretch-3

compact routing mechanism.

1 The control plane is responsible for building a routing information base (RIB) that defines what to do
with incoming packets by using a list of destination addresses and the outgoing interface(s) associated with
them. The data plane is responsible for building the forwarding information base (FIB) from the original
RIB to facilitate destination address lookup and packet forwarding.

3
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2 | Background

In this section, we explain several basic concepts related to our work: Internet Protocol

version 4 (IPv4) and its address scheme, and Internet Protocol version 6 (IPv6) and its

address scheme. Since our problem is defined at the inter-domain level, we will also explain

the concepts of Autonomous System (AS) and Border Gateway Protocol (BGP). The concept

of entropy in information theory is also to be reviewed, since our work studies optimal

assignments of labels to nodes in a graph.

2.1 Internet Protocol

Internet Protocol version 4 (IPv4) [Pos81] is a connectionless protocol used in interconnected

packet-switched computer networks for transmitting blocks of data called datagrams from

source hosts to destination hosts. The two basic functions that the Internet protocol imple-

ments are addressing and fragmentation. Each host is identified by a fixed-length address

(32-bit address in this case). Large blocks of data are fragmented in order to pass through

networks that allow for only small packets and are reassembled at the destination. However,

the Internet protocol only provides a best-effort communication facility. To be more spe-

cific, there are no acknowledgments either end-to-end or hop-by-hop, there is no assurance

of in-order deliveries, and there is no avoidance of duplicate deliveries.

IPv4 addresses are 32 bits long. An IPv4 address consists of a network number and a

local address of the specified network. For convenience, IPv4 addresses are usually written

in a dot-decimal format: each of the four bytes of an IPv4 address is represented in decimal,

and these four decimal integers (each in the range of 0 to 255) are separated by periods.

Originally, there were three formats or classes of addresses. In class A, the most significant

bit (msb) is 0, the next 7 bits represent a network number (or 128 possible networks), and the

last 24 bits represent a local address. In class B, the msbs are 10, the next 14 bits represent

a network number (or 214 possible networks), and the last 16 bits represent a local address.

In class C, the msbs are 110, the next 21 bits represent a network number (or 221 possible

networks), and the last 8 bits represent a local address. Due to the exhaustion of Class B

4
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networks, accelerating growth of routing tables as well as the concerns of eventual exhaustion

of the 32-bit address space, Classless Inter-Domain Routing (CIDR) was proposed as an

interim solution. While formerly the network size was implicit (since the network component

can be inferred from the msbs of an IPv4 address), classless IPv4 address blocks or prefixes

require explicit notations of prefix lengths (in the form of a bitmask or number carried

with the prefix) in order to determine the size of the network component. While formerly

there were only three network sizes, prefixes allow us to define any network size that is

equal to 2x with x lying between 0 and 31 inclusively. We will discuss CIDR in greater

detail in Section 2.3, after we introduce more concepts. Generally speaking, the splitting

(or subnetting) of a prefix is the process of dividing the address space covered by this prefix

into disjoint address spaces, the size of each of which is still power-of-two. For example, a

prefix p of length l can be splitted into 2 prefixes q1 and q2 of length l + 1. q1 and q2 share

the same l msbs with p, and differ only in the (l + 1)th msb from each other. The address

space covered by p is exactly the same as the union of the address space covered by q1 and

that covered by q2. The reverse process is called as aggregation (or supernetting).

In order to cope with the eventual exhaustion of the 32-bit address space, IP version 6

(IPv6) was proposed in [DH98] as a long-term solution. Though our work is mainly focused

on IPv4 and its addresses (due to the limited deployment of IPv6 and its addresses), we

briefly introduce IPv6 and its address mechanism because of their importance to the future

Internet. Here we are mainly focused upon the primary changes from IPv4 to IPv6. IPv6

increases the IP address size from 32 bits to 128 bits and simpler autoconfiguration of

addresses. A scope field is added to a multicast address to limit the scope of a multicast

group. In addition, anycast address is defined for sending a packet to the nearest node in

a group of nodes having that address. Some IPv4 header fields that are rarely used have

been made optional to reduce the processing cost of packets by not allowing routers to do

fragmentation and by dropping the checksum field. Options are moved to extension headers,

which allows for simpler forwarding, greater flexibility in the length of options, and greater

extensibility by allowing for new options added in the future. Internet Protocol Security

(IPsec) [Ken05] is used to support authentication, integrity, and confidentiality.

As we mentioned before, an IPv6 address is 128 bits long. It is represented as follows:

bits are divided into 8 groups; each group is 16 bits long, represented by 4 hexadecimal

digits; groups are separated by colons. IPv6 addresses are classified into unicast, multicast

and anycast addresses; IPv6 does not have the broadcast addresses like those implemented

by IPv4. A unicast IPv6 address usually consists of a 64-bit network prefix and a 64-bit

5
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interface identifier.

The Internet Corporation for Assigned Names and Numbers (ICANN) is responsible for

full management of the coordination of the global Internet’s systems of unique identifiers,

including the IPv4 and IPv6 address spaces, autonomous system numbers, and the top-

level domain name space (DNS root zone). The ICANN attempts to ensure the stability

and the security of the Internet’s daily operations. The IANA is currently a department

operated by the ICANN. A RIR is a nonprofit organization that administers the allocation

and registration of Internet number resources, for example IP addresses and AS numbers,

for a particular geographic region of the world. Currently there are five RIRs:

• American Registry for Internet Numbers (ARIN) for countries mostly in North Amer-

ica;

• Asia-Pacific Network Information Centre (APNIC) for countries in the Asia Pacific

region;

• Réseaux IP Européens Network Coordination Centre (RIPE NCC) for countries mostly

in Europe;

• African Network Information Centre (AfriNIC) for countries in Africa;

• Latin America and Caribbean Network Information Centre (LACNIC) for countries

mostly in South America.

Shifting the responsibility of the global address assignment from one single organization to

several organizations—IANA, the RIRs, and the ISPs, the efficiency and response time for

new assignments have been greatly improved and the single-point failures have been effec-

tively solved. The current hierarchical allocation is described as follows. The IANA makes

allocations from the unallocated pool of addresses to RIRs, as required. These allocations

are made in /8 prefixes. The RIRs, in turn, allocate or assign smaller address blocks to

Local Internet Registries (LIRs) or ISPs, based on the needs of each ISP or LIR. LIRs or

ISPs may make direct use of these prefixes or may split these prefixes and make further

allocations of the split prefixes to their customers.

2.2 Autonomous System

An AS is a set of routers that corresponds to a single administrative entity with a single

coherent routing policy. Each AS uses (multiple) interior gateway protocol (IGP)(s) and

(multiple) metric(s) to determine how to route packets within the AS and an inter-AS
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routing protocol to determine how to route packets from and to other ASs; the only inter-

AS routing protocol in use today is the Border Gateway Protocol, version 4. Each AS has an

autonomous system number (ASN) that uniquely identifies it in the Internet and is used for

inter-AS routing. Formerly, an ASN was a 16-bit integer; now Internet Assigned Numbers

Authority (IANA) allocates 32-bit ASNs [VC07]. The 32-bit ASN is either simply written

as a decimal integer or is divided into the higher 16-bit group and the lower 16-bit group

separated by a dot, with each group represented as a decimal integer [HM08].

ASs can be classified into Tier-1, Tier-2 and Tier-3: Tier-3 ASs have a small number of

localized customers; Tier-2 ASs have state-wide or region-wide customers; and Tier-1 ASs’

routing tables have explicit default-free routes to all reachable Internet destinations (i.e.,

global coverage). There are 12 Tier-1 ASs in mid-2012 and they are connected with each

other, forming almost a clique that we usually call the core of the Internet.

Faloutsos et al., in their seminal paper [FFF99], found that for both router-level graphs

and AS-level graphs the distributions of node degrees, the degree ranks of the nodes, and the

number of nodes within h hops of each other follow power-law distributions. We reiterate the

facts about power-law graphs here [BC06]: “A power-law graph G = (V,E) is an undirected,

unweighted graph whose degree distribution approximates a power law, i.e., the number

y = |{v ∈ V | deg v = x}| of vertices whose degree is x satisfies

• {

y = ⌊c⌋ − r when x = 1

y = ⌊ c
xγ ⌋ when x = 2, 3, ..., ⌊c

1

γ ⌋

• r = n−∑⌊c
1
γ ⌋

x=1 ⌊ c
xγ ⌋

• c is a value minimizing |n− r|

for some constant γ ∈ R+ called the power-law parameter of G.”

The average hop distance between ASs (or the “diameter" of the Internet) stays relatively

constant over time and even decreases in recent years due to the increase in the density of

the interconnections [LKF07]. The average hop distance between any AS pair is observed to

lie between 3 and 4, with most of the AS pairs 2 to 4 hops away from each other [MKF+06b,

DD11]. This makes an AS-level graph a small-world graph. A small-world graph is typically

defined to be a graph in which the hop distance between any two nodes grows logarithmically

with the total number of nodes. Its defining property is a high clustering coefficient: for a

given median hop distance, a small-world graph has a much larger percentage of 3-cycles

among all connected node triples than a random graph [WS98].
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2.3 Border Gateway Protocol

The contractual commercial agreements between ASs can be classified into three categories:

in a provider-to-customer relationship, a customer AS pays a provider AS for sending/re-

ceiving traffic from/to the rest of the Internet on its behalf; in a peer-to-peer relationship,

both ASs find it mutually beneficial to exchange the traffic of their customers; in a sibling-

to-sibling relationship, both ASs normally belong to the same organization and each one

exports all of its routes to the other.

Figure 2.1 shows a simplified description of the practical Internet with various types of

ISPs interconnected via different business relationships among them. “($$)” denotes rela-

tionships involving financial settlements.
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Figure 2.1: simplified picture of the wide-area Internet

ASs can also be classified into stub AS and transit AS. A stub AS is an AS that only

carries traffic that either originates or terminates within that AS. A transit AS is an AS

that carries traffic that does not originate or terminate within it.

A Provider Aggregatable (PA) prefix is assigned by a transit provider, while a Provider

Independent (PI) prefix is assigned directly by a Regional Internet Registry (RIR) instead.

CIDR proposes the adoption of PA prefixes in order to make possible the aggregation of

routing information along topological lines mainly defined by provider-to-customer relation-

ships. A provider AS splits one of its prefixes and assigns one or more split prefixes to each

of its customer ASs. If we assume that each customer AS is single-homed to this provider

AS, no explicit route is needed for each customer AS; this provider AS only advertizes p.
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This advertizement provides reachability and routeability for the split prefixes assigned to

the customer ASs. As shown in Figure 2.2(a), AS123 extends 128.163.0.0/16 of its single

provider—AS10—into 128.163.140.0/24, and, as a result, AS10 advertizes 128.163.0.0/16

without advertising any extensions of this address block. On the other hand, because a

multihomed AS must be advertized into the Internet by each of its service providers, it is

often infeasible to aggregate any of its address blocks into the address space of any one of

those providers. Due to the deployment of CIDR-style addressing, forwarding in the Inter-

net is done using the longest prefix match rule: each entry in a routing table corresponds

to a prefix; one destination address may share some number of msbs with (or match) more

than one routing table entry; the table entry, with the largest number of msbs matching

those of the destination address, is called the longest prefix match; and it is the information

contained in this longest prefix match that is used for forwarding.

A multihomed AS is an AS that has more than one transit provider. The driving forces

for an AS to be multihomed include protection from single-point failures, load sharing across

multiple transit providers, avoiding problematic paths, and routing traffic of a particular

type to a particular ISP [ALD+05]. Figure 2.2(b) shows one example to illustrate why

multihoming makes the number of routing entries in the routing tables closer to the number

of stub ASs than to the number of transit ASs, making CIDR lose its original ability to keep

the global routing table growth at a sustainable rate. As shown in Figure 2.2(b), though

AS123 extends 128.163.0.0/16 of one of its two providers—AS10—into 128.163.140.0/24,

AS10 advertizes 128.163.140.0/24 as well as 128.163.0.0/16. If AS10 were to advertize only

128.163.0.0/16 with AS20 advertising 128.163.140.0/24, then all the traffic destined to any

address contained in 128.163.140.0/24 would traverse AS20, and none would traverse AS10,

unless AS20 becomes unreachable.

Export policies of an AS are important since no ISP wants to transmit traffic that does

not in some way generate revenue. An ISP usually provides full transit of incoming and

outgoing packets for its own customers, and provides some transit for the customers of the

other party involved in a peering relationship with it. When a router receives more than

one route to a destination network, it prefers the route advertized by customers over the

route advertized by peers, which are preferred over the route advertized by providers. This

is because an AS tries to avoid paying its providers for transmitting traffic if possible.

Now that we have introduced the concept of AS in Section 2.2, we can introduce the

most important inter-AS routing protocl—BGP [RLH06]. The current version is 4. A

router that implements BGP is called a BGP speaker. A BGP speaker in a different AS is

9
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Provider AS 10
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(b) multi-homed AS assigned a PA prefix

Figure 2.2: Multihoming and PI addressing prevent address aggregation

called an external peer while a BGP speaker in the local AS is called an internal peer. The

main function of a BGP speaker is to exchange routes, each of which consists of the set of

destinations and the path used to reach them, with other BGP speakers. Each AS chooses a

single path to get to each destination prefix, even though it may learn many possible paths.

The choice is based on policy considerations, which is based on business relationships that

we just talked about at the beginning of this section. When a routing table changes, it only

requires incremental updates rather than periodic updates.

Unlike interior gateway protocols (IGPs), BGP does not optimize metrics, such as the

number of hops of paths; rather, it provides reachability information and implements various

forms of routing policies. Therefore, the route announcement, due to either a route change

or the appearance of a new route, does not contain metrics, such as the number of hops of

paths or delay; it contains one or more BGP attributes. Here we enumerate the key BGP

attributes: NEXT_HOP, ASPATH, and MULTI_EXIT_DISC. For each announced prefix

the NEXT_HOP attribute indicates the address of the router in one neighboring AS the

packet destined to any address contained in this prefix is forwarded to; the ASPATH at-

tribute indicates the vector of ASs the packet destined to any address contained in this prefix

traverses; the MULTI_EXIT_DISC is used to discriminate among multiple exit points to

the same neighboring AS. Constrained by the routing policies based upon the contractual
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commercial agreements between ASs, a BGP route used in forwarding packets by a BGP

speaker may not be the shortest length. Since BGP only supports destination-based forward-

ing mechanisms, it can support only those policies that are consistent with this forwarding

mechanism. From the BGP route announcements, we can construct an AS-level graph in

the following way. An edge exists between ASi and ASj if and only if ASi advertizes some

prefix to ASj or vice versa. The degree of an AS is defined to be the number of ASs adjacent

to it in an AS-level graph.

BGP also supports CIDR [FL06] by aggregating a set of destination addresses into

a single IP prefix and by aggregating a set of AS paths using unordered AS sets. The

aggregation of a set of AS paths is performed as follows. Given two AS paths—123 and 124,

the aggregate of these paths can be written as 12[34]; [34] is called an AS set.

The BGP that is used within an AS is called internal BGP (iBGP), and the BGP that

is used to distribute information among ASs is called external BGP (eBGP). Formerly, to

avoid routing loops, any externally learned route by one BGP speaker was redistributed over

iBGP sessions to all other BGP speakers within the same AS, which then did not readvertize

this route. This means all these iBGP speakers must be fully meshed, which does not scale

well when the number of iBGP speakers is large. Therefore authors in [BCC06] proposed

the use of route reflectors (RRs): in its simplest form one iBGP speaker of an AS is chosen

to be a RR while all other iBGP speakers within this AS set up iBGP sessions with this RR.

This RR advertizes BGP update messages received from one iBGP speaker to all the other

iBGP speakers. Since this RR helps forward BGP update messages among iBGP speakers,

iBGP speakers are no longer required to be directly connected to form a full mesh. Other

benefits [POA+12] brought by the usage of RRs are: reduced operational costs (adding or

removing a router only requires the reconfigurations of RRs this router connects to), reduced

sizes of routers’ RIB-in tables that contain unprocessed routing information received from

routers’ BGP neighbors, the reduced number of BGP updates, and the coexistence of RRs

and conventional routers that do not understand RRs. Note that iBGP is not an IGP, such

as Open Shortest Path First (OSPF), Routing Information Protocol (RIP), and Intermediate

System To Intermediate System (IS-IS), since iBGP cannot be used to set up the routing

states necessary to forward packets correctly among internal routers within an AS. Rather,

iBGP is used when information about externally learned routes is exchanged among BGP

routers in an AS, and this kind of information is routed among BGP routers via some IGP

used by this AS. Figure 2.3 illustrates the relationship between eBGP and iBGP; eBGP

sessions are set up between two routers that are usually directly connected while iBGP
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sessions are set up between two routers that are usually not directly connected.

eBGP

eBGP

eBGPiBGP

iBGP

iBGP

internal router

border router

direct link

indirect link

Figure 2.3: eBGP and iBGP

The drawbacks of BGP are slow convergence due to not propagating policy information,

error-proneness due to the requirement of explicit configuration, and insecurity due to the

lack of the security enhancements.

There are several projects that collect real-time BGP routing information about the

Internet from different locations around the world and make public these Internet routing

data. One of such projects is the RIS project done by RIPE NCC [RIP]. Currently it

collects and stores Internet routing data from more than 542 peers around the globe. Three

of the Remote Route Collectors (RRC)1 do not expose their BGP peering lists. The Route

Views project [UO] of the University of Oregon is also intended to obtain and store Internet

routing data from the perspectives of 350 peers. In order to significantly facilitates the study

and analysis of the BGP routing protocol, the authors in [BKL11] proposed Multi-Threaded

Routing Toolkit (MRT) as a standardized data representation to encapsulate, export, and

archive routing protocol behaviors and RIB snapshots. Both the Route Views Project and

the RIPE NCC’s RIS archive their collected BGP feeds in MRT format. ISPs record some or

all of their policies in Internet Routing Registries (IRRs) that aim to improve the consistency

and integrity of routing policies among different ISPs. Routing Policy Specification Language

(RPSL) is used by an ISP to publish routing policies for IPv4 unicast [AVG+99,MSO+99],

IPv6 unicast, and multicast address families [BDPR05], which facilitates the analysis of the

policy information from each ISP.

1rrc02.ripe.net, rrc08.ripe.net and rrc09.ripe.net
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2.4 Entropy

Entropy (also called Shannon Entropy) of a discrete random variable X (denoted by H(X)),

with possible values in {x1, ..., xn} and probability mass function p(X)—p(xi) = pi, is

defined as follows:

H(X) = −
n∑

i=1

p(xi) logb p(xi)

where b is the base of the logarithm. In particular, the unit of entropy is bit if b = 2 .

Generally speaking, an entropy is used to measure the uncertainty of a random variable or

the average information content conveyed by the value of a random variable. The H(X)

reaches the maximum when the probability mass function p(X) is a uniform distribution.

Shannon’s source coding theorem tells us that no lossless compression scheme can compress a

message, treated as a sequence of independent random variables with identical distributions

(or i.i.d. random variables), in a way such that there is more than one bit of information

contained in each bit of message. The total amount of information contained in a message

is then equal to the entropy of the message times the length of the message.

The two most famous entropy encoding algorithms include Huffman coding and Algo-

rithm coding. The main idea common to these two encoding algorithms is that more fre-

quently used symbols (or values of a random variable) are encoded with fewer bits, through

which fewer bits are used in total (close to those required by the corresponding entropy).

The main difference between these two lies in that Huffman coding replaces each symbol of

a message with a code while Algorithm coding encodes the whole message into a number in

[0, 1].
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3 | Related Work

In this section we will enumerate several important research directions that are related to

our work. There are research works studying the representative characteristics of an AS-

level graph, and works proposing different ways to improve the accuracy of the inferred

AS relationships. There are also research works studying the issues faced by the Border

Gateway Protocol, especially the exponential Default Free Zone table growth, and their

possible solutions in order to achieve routing scalability.

3.1 AS-level Graph

Researchers observed that in the Internet there is a hierarchy imposed on nodes (distinguish-

ing stub domains from transit domains) rather than random structure. After that, Faloutsos

et al., in their seminal paper [FFF99], found that in both router-level graphs and AS-level

graphs the distributions of node degrees, the degree ranks of the nodes and the number of

nodes within h hops of each other follow power-law distributions. Later on, the authors

in [MKF+06a] pointed out that the joint degree distribution (JDD) appears to fundamen-

tally characterize Internet AS-level graphs and narrowly define the values of other widely

considered metrics. The JDD is defined to be the probability that a randomly selected edge

connects i- and j-degree nodes.

The authors in [CGJ+04] tried to quantify the completeness of the AS-level graph ob-

tained from the Route Views, and found that a significant number of inter-AS connections are

invisible from the BGP routing tables. In addition, they tried to capture a more representa-

tive AS-level graph by supplementing the Route Views data with information from Internet

Looking Glass sites as well as IRR databases. However, the authors in [MKF+06a] com-

pared AS-level topologies obtained from the three most commonly used BGP data sources—

traceroutes, BGP, and WHOIS—in terms of a range of topology metrics and analyzed the

interplay between the collection mechanisms of these three data sources and the resulting

AS-level topologies. They pointed out the open question as to what data source contains

reliable information about what type of links, the answer to which can help guide us in
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combining the right information from the right data source in order to get the most repre-

sentative AS-level topology. The authors in [DCDkc12] studied the connectivity of a small

group of ASs that feed BGP RIBs to Route Views and RIPE NCC’s RIS collectors, since

the authors in [DD08,OPW+08] indicated that many AS links, especially peering links, are

missing in Route Views and RIPE NCC’s RIS data unless either one or both endpoints of

the link are BGP route monitors. They first used Route Views and RIPE NCC’s RIS data to

identify such usable monitors, and found that the low visibility of the connectivity of Content

Providers (CPs)—ASs that make money by providing content instead of Internet transit,

e.g., a network that supports e-commerce—mostly contribute to the incompleteness of the

AS topology. They also proposed the CMON algorithm to classify links of each usable mon-

itor, and found that customers increasingly choose Large Transit Providers (LTPs) as their

primary transit providers and only use Small Transit providers (STPs) as backup transit

providers and that, in order to reduce upstream transit costs, CPs are peering aggressively.

3.2 AS Relationship

L. Gao in [Gao01] showed that the selective export rule set up according to an AS’s relation-

ship with its neighboring ASs made the AS path of a BGP routing table entry “valley-free".

That is, a provider-to-customer edge or a peer-to-peer edge can be followed by only provider-

to-customer or sibling-to-sibling edges. This property sets up the pattern of an AS path.

That is, one or zero uphill paths (a sequence of edges that are either customer-to-provider or

sibling-to-sibling), followed by one or zero peer-to-peer edges, followed by one or zero down-

hill paths (a sequence of edges that are either provider-to-customer or sibling-to-sibling).

Gao then proposed an algorithm for inferring AS relationships based upon the above AS

path patterns and AS degrees (i.e., a provider is typically larger than its customers and

two peers are generally of comparable size). The authors in [SARK02a] assigned a rank to

each AS according to the directed AS-level graph generated from each vantage point and

inferred the relationship between any two ASs by comparing their vectors, each of which

was composed of ranks assigned to an AS from multiple vantage points. Based on these

relationships they constructed the AS-level hierarchy of the Internet. X. Dimitropoulos et

al. in [DKF+07] introduced new heuristics for inferring sibling-to-sibling and peer-to-peer

relationships and improving the integrity of provider-to-customer (or customer-to-provider)

relationships. They also validated the inferred AS relationships with organizations’ network

administrators operating the ASs.
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3.3 Peer-to-peer Overlay Networks

There are several structured peer-to-peer overlay networks implementing object location

based on keys. They find a node that is responsible for the key contained in a message, and

route the message, by using the existing Internet infrastructure, to this node. They put no

constraints on the structure of the keys used, and thus no location-based aggregation can

be applied. Pastry [RD01] and Tapestry [ZHS+04] take into account network topology in

order to reduce the routing stretch. However, Chord [SMK+01] sacrifices network latency

for the simplicity in handling concurrent node arrivals and departures. Though the routing

state maintained at each Pastry/Tapestry/Chord node in order to find the node that is

responsible for a key is scalable, and the routing stretch incurred by Pastry/Tapestry/Chord

can be made small, they still rely on the existing Internet to get to the node found.

3.4 BGP Table Growth

In [Hus,Hus01a], Huston pointed out several practical operations that may have contributed

to the growth of the tables. Bu et al [BGT04] attributed the BGP table growth to four ma-

jor factors: any prefix of a multihomed AS cannot be aggregated by any one of its providers

(refer to Figure 2.2(b)); prefixes, with the same set of policies applied to them, cover discon-

tinuous address space; a prefix of an AS is split and these split prefixes are advertized along

different AS paths; and prefixes, which use the same set of policies and cover continuous

address space, fail to aggregate. The above four factors are called multihoming, address

fragmentation, load balancing, and failure-to-aggregate respectively. They found that the

main contributor among these is address fragmentation; however, both load balancing and

multihoming contributions grow faster than routing tables, and load balancing is identified

as the fastest growing contributor. They based the above conclusions on the BGP routing

data collected from year 1997 to year 2002. Here we extend their work by measuring how

these four factors affect the BGP table size over more recent years in Figure 3.1. Each line

in Figure 3.1 shows the change in the difference between the number of prefixes in total

and the number of prefixes after the corresponding contributor were removed over time.

Refer to [BGT04] for the details in how to calculate the number of prefixes after each of

the contributors were removed. From Figure 3.1, we can see that load balancing and multi-

homing contributions keep growing faster than the other two contributions, as pointed out

in [BGT04]. However, we identify multihoming, instead of load balancing, as the fastest

growing contributor from year 2005 to year 2008. The steep fall from year 2008 for the
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Figure 3.1: BGP table growth caused by four factors in [BGT04]

multihoming contributor can, in some extent, measure how far the PI prefixes are assigned

to multihomed ASs. Bu et al [BGT04] identified the multihomed prefixes based on the as-

sumption that the prefix of a multihomed AS was a split prefix of some prefix of one of its

provider ASs. When more PI prefixes are assigned to multihomed ASs, the number of the

multihomed prefixes computed in Bu et al’s way decreases.

More recently, Xu et al. [MXZ+04] showed that among all the address blocks allocated

and announced into the routing tables, 45% were split into smaller fragments by ISPs or stub

ASs for load sharing or for the geographic reason, more than doubling the size of the routing

table. Furthermore, they found that the evolution of routing tables consists of not only the

appearance of new prefixes but also the withdrawal of old prefixes, and the dynamics of each

of the two processes are much higher than that of the size of the routing table. Finally, they

distinguished covering prefixes from covered prefixes and identified practical motives behind

covered prefixes.

Narayan et al. [NGV03] proposed a causal model called ARAM. It captures the causes,

rather than the effects, of table growth that govern the structure of the routing table. It

is validated by using abstract shape measures (prefix length distribu- tion, prefix depth,

and number of tree nodes), and they showed that the model matches the shape of the

existing routing tables. They then used this new model to evaluate the storage requirement

of various IP lookup schemes as a function of the table size. They concluded that the

algorithms based upon multibit tries provide more density (more prefixes per chip) than

TCAMs unless TCAMs can be engineered to use 8 or fewer transistors per cell.
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3.5 BGP Convergence

The authors in [OZPZ09] made the first attempt to quantify the pervasiveness of BGP slow

convergence based on the entire operational Internet rather than controlled experiments

using a small number of prefixes [LABJ01,LAWS01]. They used a timer-based approach to

cluster routing updates into events, classified these routing events into different categories,

and computed the duration as well as the number of paths explored for each category of

events. As a by-product of event classifications, the authors developed a new usage-time-per-

path based algorithm to emulate a router’s policy in ranking available AS paths to the same

destination. They justified the argument that path exploration and BGP slow convergence

do widely exist in the Internet, but they also showed that the severity of the convergence

problem varies depending on both the origin of the prefix associated with the routing event,

and the point in the routing hierarchy at which the event was observed. They also found an

order for the durations of various route convergence events.

3.6 Solutions to BGP Scalability Issue

The concept of subnetting [MP85] was first proposed in the late 1980s for moderately large

organizations with more than one Local-Area Network (LAN). If a distinct network number

had been assigned to each LAN, then an explosion in the size of Internet routing tables

would have been incurred.

Later on, CIDR [FL06] was proposed in the mid-90s and has been served as a mid-term

solution to the routing scalability issue faced by Internet. CIDR introduces a new allocation

architecture based on the actual and short-term needs of individual organizations, uses

supernets to aggregate multiple contiguous prefixes to reduce the number of entries in each

global routing table, and assigns prefixes following the underlying Internet topology so that

aggregation can be applied to further reduce the routing state. By using route aggregation,

CIDR alleviates route flapping since any components of an aggregated route would not cause

that aggregated route to flap.

The original IP design stipulated that an IP address be globally unique and reachable, as

well as being the identifier of a network attachment point to the Internet. Network Address

Translation (NAT) [EF94] has changed the original definition of an IP address and was

proposed as another short-term solution to address space depletion and routing scalability

issues (for example, renumbering, multihoming). A NAT is placed between a stub domain

and the backbone and translates the local IP addresses (i.e., IP private addresses) used by
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this stub domain and reused by other stub domains to the globally unique IP addresses.

This approach is feasible when only a subset of the local IP addresses within a stub domain

are required to be translated into the globally unique IP addresses (only incurring small

translation tables). NATs are accepted as a reality in today’s IP architecture, and various

NAT traversal solutions [ea] have been developed to restore the end-to-end reachable model

required in the original IP architecture. A review of NAT can be found here [Zha08].

In [BFCW08] and [BFCW09], the authors proposed Virtual Aggregation (ViAggre)

which no longer requires FIBs to include routes to all prefixes visible in today’s Internet.

Instead, it uses a set of virtual prefixes, which, topologically speaking, are not valid aggre-

gates. This set of virtual prefixes covers the whole global address space. An Aggregation

Point Router (APR) is responsible for one or more virtual prefixes and installs entries for

all the longer prefixes covered by these virtual prefixes into its FIB table. A non-APR, on

the other hand, only installs the routes for virtual prefixes into its FIB table and suppresses

any routes for longer prefixes covered by virtual prefixes. ViAggre reduces the size of FIB

without requiring any architectural change or any change in router software and protocols.

However, it will stretch internal paths within an ISP as well as demand configuration changes

for internal and external routers of the ISP.

In [VBc+04] a group of prefixes originated at an AS and deemed to be equivalent by

this originating AS is declared as an atom; other ASs must announce each atom as one

routed object. An atomized routing architecture was also put forward, which results in the

reduction in the size of the DFZ routing table and improvement over convergence behavior.

The authors in [NB09] proposed a layer 3 shim protocol for IPv6 that achieves scalable

multihoming by making each multihomed host in a site have multiple provider-dependent

IPv6 address prefixes. When something fails or one communicating end host finds that

one or more of its locators becomes unreachable or has changed locator preference settings,

another working IPv6 address pair is chosen to preserve established communications, causing

minimal impact on upper-layer protocols. In addition, load-spreading can be achieved by

using different IPv6 address prefixes of a host for different communications to the host. This

protocol does not separate the identifying and the network-layer routing and forwarding

functions overloaded in an IPv6 address.

The author in [Chi99] pointed out that due to the failure in distinguishing the host ob-

ject class from the interface object class, the name, i.e., an IP address, is used to identify

conceptually different things—what we seek, where it is, and how to get there. The multi-

plicity of roles for IP addresses makes host mobility and host multihoming more difficult to

19



www.manaraa.com

solve.

In [MWZZ07] the authors put forward the general idea that customer networks be sep-

arated from the backbone routing system consisting of various provider networks. By per-

forming this separation, the size of the global routing table and the amount of routing churn

is dramatically reduced, the roadblocks for end sites to use multihoming are removed, there

is no need for renumbering when changing providers, and the barrier against security at-

tacks from compromised end hosts is raised. However, it is difficult to detect border link

or border router failures. In addition, the critical mapping function incurs delays in packet

forwarding, a target for security attacks, and a system cost for implementation and deploy-

ment. Similar work can be found in [FFML12], which follows the ENCAPS scheme [Hin96].

The authors outlined a detailed Locator/ID Separation Protocol (LISP) to implement the

division of the global address space (existing IPv4 or IPv6 address space) into Endpoint

Identifiers (EIDs) and Routing Locators (RLOCs). RLOCs are togologically aggregatable

and globally routable, while EIDs are only routable within sites without regard to topology.

LISP routers intercept EID addressed packets and help them route through the core of the

Internet by mapping source and destination EIDs within packets to corresponding RLOCs.

In [ZFWY06] the authors used inter-provider tunneling and again a mapping service that

maps a customer site’s prefix to a tunnel endpoint (i.e., an address of a provider’s edge

router) so that the routers in the provider infrastructure only need to compute routes to

tunnel endpoint prefixes. To shrink the FIB table size, virtual prefixes are introduced to de-

couple network topology from addressing in order to scale global IP routing in the Internet.

However, by doing this, AS paths can be stretched.

The author in [O’D97] proposed an alternate addressing architecture for IPv6 in order to

solve the scaling issues such as rehoming, multihoming, and global route computation. The

16-byte IPv6 address now consists of Routing Goop (RG), Site Topology Partition (STP),

and End-system Designator (ESD). The architecture separates public topology (allowing for

aggressive hierarchical topology aggregation) from site-local topology, separate site identity

(using the globally unique ESD element of an address) from where the site is attached to

the public topology (using the RG element of an address), insulate the hosts in the site

from the global Internet (rewriting the RGs of the addresses at site border routers), and

circumvents a hierarchical forwarding path by a cut-through within the optimization region

(an engineering choice made by two parties of the cut-through).

Without requiring the majority of the ASs to deploy the solution in order to fully achieve

its benefit, the authors [KJZ+10] proposed an evolutionary path towards scaling the global
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routing system: at each step the ASs making the changes should interoperate with those

that have not changed so far, and should gain immediate benefits to amortize the cost for

the deployment of those changes. The main idea of this approach, which can be termed

as aggregation with increasing scopes, involves FIB aggregation within a router, virtual

aggregation [BFCW08, BFCW09] within an AS as well as across the ASs, and mapping

exchange (mapping a destination prefix to its provider’s egress router) through which the

flaps of customer prefixes can be isolated from the core of the Internet.

The authors in [DD10] reviewed the functional requirements for an inter-domain routing

system in order to meet not only the needs of the current Internet routing system but also

those of the future Internet [Lit89]. It also reviewed other work on requirements for domain-

based routing [Tsu87,HD90,ISO94,Chi91]. After that, they pointed out several issues related

to the current domain-based routing architecture in order to gain some insights into the

requirements for the future domain-based routing architecture.

3.7 Compact Routing

The main idea of hierarchical routing based on address aggregation used in today’s Internet

comes from the work [KK77]. However, due to the small-world phenomenon of the AS-

level graph (most of the node pairs are within 2-4 hops away from each other), we cannot

truly realize the effectiveness induced by abstracting out the topological details about the

remote parts of the Internet. In addition, various business relationships and operational

requirements have induced various forms of address deaggregation. Another direction to

deal with the routing scalability (one that would require a radical redesign of the Internet)

is compact routing. Here compact means the sizes of address, header and routing table are

logarithmic in the network size, and the path stretch is bounded by some small constant.

Under typical assumptions, shortest path routing cannot guarantee sublinear routing table

sizes [GP96], except for special graphs (for example, grids and trees). In order to make the

table size sublinear to the network size, some of the topological information is sacrificed, and

the path hop stretch significantly larger than 1 is thus incurred. Compared with geographic

routing (refer to next subsection), compact routing provides a guarantee for the worst-

case path hop stretch. More specifically, it has been shown that, to achieve a worst case

path stretch of 3, the size of a route table should be of order O(
√
n log n) [TZ01], and, to

achieve a worst case path stretch less than 3, the size of a route table has to be of order

O(n) [GG01, GP96]. The best performing name-dependent (topology-aware) and name-
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independent (topology-unaware) general schemes are [TZ01,AGM+08] 1. The multiplicative

stretch achieved by any of these two is 3 [GG01]. On the other hand, for static scale-free

graphs, the logarithmic routing table size and the close-to-one stretch can be achieved [BC06,

KFY04]. In particular, the authors [BC06] built a small-size set of spanning trees, and the

metadata stored in a message header as well as at a node’s routing table for each tree in

the tree cover are computed using the compact routing algorithm for trees in [TZ01]. An

exact distance labeling scheme for trees in [Pel99] is also applied for picking which tree in

the cover to use for forwarding.

However, for Internet-like graphs, there is some bad news about compact routing [KkccFB07]:

(1) using flat identifiers can only result in polynomial rather than logarithmic scaling, which

means the locator-identifier split cannot really alleviate the routing scalability concerns; (2)

in the face of a topological change, the communication costs incurred by achieving coherent

full views of the topology cannot scale better than linear, which, though better than the

exponential communication costs per topological change of any currently deployed routing

scheme, does not allow for “infinite scaling” [DDK06].

3.8 Survey on Addressing Schemes Using Geometric Information

As an alternative to the traditional routing table approach, each router in a large inter-

network could be assigned either a physical location from some Global Positioning System

(GPS) device or virtual coordinates in a metric space (X, d) in which the initial graph

topology is embedded. Each packet is forwarded to routing elements that make the great-

est progress toward the destination in terms of geometric distances. This kind of greedy

forwarding requires little routing state to be maintained at each node, and the size of each

routing table is proportional to the degree of each node.

Actually, nodes in many networks can efficiently find the targets they want to commu-

nicate with, even though they do not have any global knowledge of the topologies of the

networks. The authors in [TM01] conducted the following experiment in 1960s: an arbitrary

target person and a group of starting persons are selected. Each starting person is provided

with a document and the information related to the target person. The sender has to choose

one recipient that can advance the progress of the document toward the intended target.

Their experiment results showed that 29% of the documents sent out reached the intended

target. In addition, the completed acquaintance chain from some starting person to the

1the authors of compact routing work use “name" instead of “address" in order to avoid certain connota-
tions of the latter term—viz., that addresses are tied to topology
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target has only 5.2 links on average.

J. Kleinberg [Kle00] proposed a network model to explain the small-world phenomenon.

Specifically, in a two-dimensional n×n lattice, each node u has a short-range connection to

each of the nodes within p ≥ 1 Manhattan distance, and has q ≥ 1 long-range connection

chosen independently from a distribution with a clustering exponent α. Each node knows its

own coordinates, the coordinates of its neighbors, and the coordinates of the target node in

the Euclidean plane. The message is then forwarded using the connection that advances it

closest to the target, in terms of the lattice distance. He found that the efficient navigability

can be achieved when α = 2.

3.8.1 Using Physical location information

Geo-based routing has been considered mostly in the context of wireless and ad-hoc net-

works. Geographical locations from GPS devices were used and the routing based upon these

physical locations was performed as follows: a packet is forwarded to the node that mini-

mizes the distance to the destination. This process is known as greedy routing. However, a

packet may get stuck at some node that is closer to the destination than any of its neighbors.

This “local minimum issue" has been solved by using the face routing method [KK00]: each

node is assumed to be equipped with a radio with the same circular radio range r, and we

say there is an edge between two nodes if the geographical distance between them is smaller

than r; when a packet gets stuck at a node, it is forwarded on progressively closer faces of

the planar subgraph of the network, and each of these faces is traversed by the right-hand

rule. The procedure continues until the packet reaches a node that is closer to the desti-

nation than the one where the packet entered this face routing phase. The forwarding of

the packet then returns to the greedy phase. Here the right-hand rule states that when

node x is reached from node y, the next edge to be visited is the first link after sweeping

counter-clockwise about x from edge(x,y). A planar graph is a graph that can be embedded

in a plane; it can be drawn on a plane in such a way that its edges intersect only at their

endpoints. Here the planar subgraph is constructed to make the above solution to the local

minimum issue work. If the graph is not planar, face routing may fail. Two well-known pla-

nar graphs are relative neighborhood graph (RNG) and Gabriel graph (GG) [GS69,Tou80].

The planarization technique proposed in [KK00] reduces to removing edges from the original

graph, until either RNG or GG is obtained without disconnecting the graph. The drawback

of this graph planarizing method is the idealized assumption of unit disk graphs as connec-

tivity graphs. In such graphs, a node is always linked to all nodes within its nominal radio
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range, and never connected to nodes outside this range. Another problem with this method

is that, without using any effective bounding, it may need to explore a considerable part of

the entire network [KWZ03].

There are many variants of early fallback heuristics based upon the observation that

the greedy forwarding is on average more efficient than the face routing. The “first closer”

heuristic, used by the “face routing" [KK00] mentioned earlier, makes the algorithm resume

the greedy routing as soon as a packet arrives at a node closer to the destination than

the starting point of the current face routing phase. The algorithm using this heuristic

is proved to be not worst-case optimal. It is believed that the complete boundary of the

current face has to be explored for the algorithm to achieve asymptotic optimality, but a

very large face may have to be explored, which is prohibitively expensive compared with an

optimal path from the source to the destination in Greedy Other Adaptive Face Routing

(GOAFR) [KWZ03]. GOAFR [KWZ03], on the other hand, provided worst-case guarantees

as well as average-case efficiency. F. Kuhn et al. [KWZZ03] extended GOAFR to GOAFR+

which provided theoretically asymptotically worst-case optimality as well as average-case

efficiency on practical networks by dropping the assumption that the distance between nodes

may not be smaller than some constant value.

Young-Jin Kim et al., in [KGKS05], showed that this idealized assumption of unit disk

graphs is grossly violated by real radios, which leads to permanent failures in geographic

routing. They instead proposed the Cross-Link Detection Protocol (CLDP) that makes

geographic routing always succeed on any kind of connectivity graphs. It mainly differs

from [KK00] in its planarizing method—dropping the unit disk graph assumption.

The main drawbacks of the methods in [KK00,KGKS05,KWZZ03,KWZ03] are:

• significant amounts of network congestion along the boundaries of the network holes.

• a planar subgraph maintained at each node, introducing more states.

To cope with the first drawback, S. Subramanian et al. [SSG07] proposed a randomized

multi-path routing algorithm called the RANDOMWAY algorithm that can achieve near-

optimal throughput, with delays near the optimal throughput-delay trade-off curve, even

in networks with holes. They also put forward a constructive scheme called RANDOM-

SPREAD to uniformly distribute traffic flows over the region, and thus can support any

traffic demands, even those with wide variations. The main problem with their methods is

that they only used simplified traffic models, a small class of holes, and planar input graphs.

As for the second problem, Q. Fang et al. in [FGG04] tried to specify what underlying
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geometric properties cause the local minimum phenomenon. They defined “stuck nodes,”

where packets can possibly get stuck in the greedy forwarding process. They then put

forward a local rule—namely, TENT rule—for each node to test whether it is a stuck node,

and a distributed algorithm—BOUNDHOLE—to find the so-called “holes” associated with

stuck nodes. Finding the boundary of each hole gives rise to a route around the hole, which

is used to help get packets out of the local minimum. Unlike the approaches based on

planar subgraphs, computing and storing the information of the routes around holes are

only required at the parts of the network where there are indeed communication voids.

3.8.2 Embedding into Geometric Space

The main problem with geographic routing based on physical locations is that this location

information may be unavailable. If the location of a destination is unknown, one solution was

provided in [LJC+00]. A distributed location service called Grid’s Location Service (GLS)

was proposed: each node maintains its current location in a number of location servers, and

each node acts as a location server on behalf of some other nodes. However, if some node

is not equipped with a GPS and thus has no location information available, inferring this

missing physical location for this node has been proven to be NP-hard [BK98,KMW04].

Instead of using the actual location of each node, building virtual coordinates on top

of the graph were proposed, and greedy routing was performed based on these coordinates

instead of physical locations. The main idea of [RPSS03] is as follows: a few vertices were

chosen as anchor nodes, and each vertex computed the length of the shortest path from

itself to each of these anchor nodes and combined those distances to serve as its virtual

coordinates. The problem with this scheme is that in order to ensure that a distance-

decreasing path exists for any pair of nodes, Θ(n) anchors had to be used in the worst

case.

To overcome the local minimum issue and to guarantee 100% packet delivery rate, the

concept of “greedy embedding” was defined in [PR05], and different embedding methods

ensuring greedy property have been proposed in recent years. We will examine these methods

in the following sections. First we will illustrate the definition of a greedy embedding: a

greedy embedding is a mapping f : V → X, such that ∀u,w ∈ V : u 6= w : (∃v ∈ V \{u,w} :
v ∈ Nu : d(f(v), f(w)) < d(f(u), f(w))), where Nu denotes the neighboring nodes of u. R.

Kleinberg [Kle07] proved that every finite graph with n nodes has a greedy embedding in a

d-dimensional normed vector space where d = Ω(log n), and that every finite graph with n

nodes has a greedy embedding in the hyperbolic plane.
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3.8.2.1 Embedding into Euclidean Space

C. Papadimitriou et al. [PR05] put forward a famous conjecture: any 3-connected planar

graph can be greedily embedded in an Euclidean plane, such that there is an Euclidean-

distance-decreasing path between any pair of nodes. T. Leighton et al. [ML08] resolved

this conjecture and constructed a greedy embedding into the Euclidean plane for all circuit

graphs (generalized forms of 3-connected planar graphs). However, restrictions have to be

put upon the underlying graphs in order to greedily embed into the Euclidean plane.

It is known [May06] that the dimension of an Euclidean space needs to be at least log n

for a greedy embedding to exist for any n-node graph.

C. Westphal et al. [WP09] put forward a method to embed a graph into the Euclidean

space of dimension O(log n). Their algorithm resulted in the size of each entry in a route

table of order log2 n, and the number of entries of a route table the degree of the node,

achieving the scalable routing. In order to embed a n-node graph into this low dimensional

space, it makes use of the refined version [Ach03] of Johnson-Lindenstrauss Lemma [JL84].

The Johnson-Lindenstrauss (JL) Lemma [JL84] is stated as: for 0 < ǫ < 1, u, v ∈ ln2 ,

and k > k0 with k0 = O(log(n)/ǫ2),

(1− ǫ) ≤ ‖f(u)− f(v)‖
‖u− v‖ ≤ (1 + ǫ) (3.1)

Here ln2 stands for using l2-norm (‖.‖) to compute the distance in an n-dimension Euclidean

space. f is a random projection of ln2 onto lk2 with k < n, which realizes dimension reduction.

To be specific,

f(x) =
1√
k
(〈x, r1〉, 〈x, r2〉, ..., 〈x, rk〉)

Each coordinate rji of rj in ln2 , where 1 ≤ j ≤ k and 1 ≤ i ≤ n, is an independent and

identically distributed (i.i.d.) random variable satisfying the standard normal distribution.

The lemma shows that one can reduce the dimension of an Euclidean space from n to k,

while the distance distortion is only within a factor of ǫ.

The refinement [Ach03] uses very simple probability distributions to generate the pro-

jection matrix, reducing the computation of the projection to summations and subtractions.

Specifically, it uses the Rademacher distribution, equal to 1 or −1 with equal probability.

The resulting distortion is no worse than the previous JL implementation. Here k0 should

be chosen as follows [Ach03]: for β > 0, k0 = (4 + 2β) × log n/(ǫ2/2 − ǫ3/3), and (3.1) is

satisfied with probability 1 − n−β. By using this refinement, the number of bits used for

each coordinate is at most log(n).
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Even in the static case where the greedy property is satisfied, the greedy path found by

the above method may be longer than the shortest path in terms of number of hops. The

maximum stretch can be quite large, though the average stretch is never more than 1.5.

This is mainly due to the fact that they tried to build a tree structure out of the original

graph for the assignment of coordinates. Some connectivity information is lost; two nodes,

which are close in the original graph, may be far away on the tree and thus be assigned

coordinates that differ greatly in terms of the distance function of this metric space. See

Figure 3.2.
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Figure 3.2: A spanning tree built with coordinates assigned

Coordinates are assigned as in [WP09]. For a n-node graph, first build a spanning tree

from it. Next, get the canonical basis ξ = {e1, ..., en}, where ei is the vector with 1 in the

i-th position and 0 otherwise. Assign a n-dimensional zero vector to the root of the tree.

Define g as a mapping from a node in the tree to an n-dimensional vector. For each node v

at depth i + 1, g(v) = g(p(v)) + el, where p(v) is the parent node of v and el ∈ ξ has not

been assigned to any edge yet. Put another way, associate a distinct el ∈ ξ with each edge

in the tree. We can see that for the spanning tree built out of the original graph, we would

use a → b → c → e → d as a greedy path, even though the shortest path is a → d. This

resulted in the path stretch equal to 4. The authors [KkccFB07] pointed out that any truly

scalable Internet routing scheme should have stretch very close to 1.

C. Westphal et al. [WP09] proposed one optimization: multiple embeddings. m differ-

ent trees are constructed and m sets of coordinates are assigned. The problem with this

optimization is that these m trees may differ in a very trivial way, resulting in little gain in

connectivity information while m times coordinates have to be dealt with at each hop along

each path.

R. Flury et al. [FPW09] uses a small-size small-stretch tree cover instead of a single

tree. This is the first greedy embedding scheme with stretch guarantee. Given a graph

G = (V,E), a tree cover of size k and stretch ρ is a family T = {T1, T2, ..., Tm} of acyclic
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connected subgraphs of G such that, for every u, v ∈ V , there is a tree Ti satisfying dG(u, v) ≤
ρdTi

(u, v). Here m ≥ k, and dG(u, v) and dTi
(u, v) denote the number of hops of the shortest

path between u and v in G and Ti. The size of a tree cover is defined as the maximum

number of acyclic connected subgraphs or trees in the tree cover a node appears. Each tree

in the tree cover constructed in [FPW09] is required to be spanning, and the size of the tree

cover is thus equal to the number of trees in the tree cover. By extending the celebrated

Lipton-Tarjan separator theorem for planar graphs [LT79], and the approach to construct

tree covers [GKR04] for planar graphs, they constructed a constant-stretch tree cover of size

O(log n) for an n-vertex combinatorial unit disk graph (CUDG which is a UDG without

any geometric information). A CUDG allows for edge crossings and has the property that

if edge (u, v) of G crosses edge (x, y) of G then at least one of the (u, x), (u, y), (v, x) and

(v, y) is also an edge of G.

The authors [AP90] showed that every graph has a O(log n)-stretch tree cover with the

size equal to O(log2 n), which can be obtained in polynomial time, and the authors [FPW09]

claimed that their approach can be used for any graph as long as a small-size, small-stretch

tree cover can be constructed. Therefore, the algorithm proposed in [FPW09] works for any

arbitrary n-vertex graph by greedily embedding it into (Rd,min-max), where d = O(log3 n),

the stretch ρ = O(log n), using O(log n) bits for each coordinate of each vertex, and defin-

ing the min-max function as follows: let c be a factor of d. Let s = (s1, s2, ..., sd) and

t = (t1, t2, ..., td) be points in Rd. Divide the d-dimensional Euclidean space into d
c
c-

dimensional Euclidean spaces. Project s and t onto each of the d
c
c-dimensional Euclidean

spaces, compute the corresponding L∞ norm, and take the minimum of these L∞ norms as

the result of the min-max function. Here d
c

is set to the size of the tree cover. The key part

of the algorithm is how to construct a small-stretch, small-size tree cover for any arbitrary

graph.

In this dissertation, we complemented this work by extending algorithm 1, which is taken

from [FPW09], to the graphs we are most interested in—AS-level graphs. We revise step 1

by using the proof of [AKP91, Lemma 3.1], combined with algorithm MAX_COVER and

algorithm cover(R) in [AP90]. Each tree in the tree cover is not required to be spanning, and

the size of a tree cover is usually far less than the number of trees in the tree cover. For step

2, set c = 1
log2 3−1 and k = (log2 n)

2. Each T is isometrically embedded in l
c log2 n
∞ [LLR95,

Theorem 3.3]. The 400-node graph and 2000-node graph are generated using Georgia Tech

Internetwork Topology Models (GT-ITMs) [CDZ97]. We can see that by building the tree

cover our way, both the maximum stretch and the average stretch are bounded and remain
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Table 3.1: Avg/Max stretch by embedding into (RO(log3 n),min-max)
graph size tree cover

size
maximum
stretch

average
stretch

400 8 2.00 1.02
2000 10 2.33 1.03

small. However, according to [AKP91], any topological change will unavoidably incur the

cost of the recomputation of the whole tree cover. More research efforts are required to make

use of the resemblance between the topology before and after the given change in order to

make the tree cover update more efficiently.

3.8.2.2 Embedding into Hyperbolic Space

In this section, we recall some facts about hyperbolic geometry, especially the geometry

of a hyperbolic plane. The facts listed below are most widely used when embedding a

graph into a hyperbolic plane (refer to [Thu97] and [And07] for more details). The reason

we are interested in a hyperbolic space is that when scale-free networks are embedded in a

hyperbolic plane, the efficiency of greedy forwarding is maximized even in the face of network

dynamics, realizing a convergence-free routing scheme. However, the authors [KkccFB07]

pointed out that compact routing schemes, whether universal or not, do not scale well in

the face of network dynamics.

There are many possible models for the hyperbolic plane H, each useful in its context.

Two standard models of the hyperbolic plane H are the upper half-plane model and the

Poincaré disk model. In the upper half-plane model, H is represented by the set of points

(x, y) ∈ R2 satisfying y > 0. In the Poincaré disk model, H is represented by the set

of points satisfying x2 + y2 < 1. The hyperbolic plane has a boundary circle ∂H “at

infinity.” In the Pointcaré disk model, ∂H is identified with the circle ‖z‖ = 1. where

z = x+ yi, (x, y) ∈ R2. In the upper half-plane model, ∂H is identified with the one-point

compactification of the real line. The points on the boundary circle ∂H are called “points at

infinity” or “ideal points.” A hyperbolic line or geodesic is represented by an arc of a circle

that is perpendicular to ∂H and meets ∂H at two ideal points. In the upper half-plane

model, a vertical line is treated as a geodesic that intersects ∂H at the point at infinity and

the point on the real line. Every orientation-preserving isometry of H is represented by a

Möbius transformation [And07, p. 27]

z 7→ az + b

cz + d
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for some complex coefficients a,b,c,d such that ad 6= bc. A Möbius transformation can also

be represented by a matrix [
a b
c d

]

It turns out that the composition of two Möbius transformations is represented by the

product of the corresponding matrices. This defines a mapping from the group of invertible

2-by-2 complex matrices to the group of Möbius transformations denoted as Möb+. µ :

GL2(C) 7→Möb+ is defined as follows [And07, p. 47]

µ(M =

[
a b
c d

]

) = (m(z) =
az + b

cz + d
)

GL2(C) = {
[
a b
c d

]

|a, b, c, d ∈ C, ad 6= bc}

In particular, a Möbius transformation is an isometry of the upper half-plane model of H

if and only if it preserves the upper half-plane as a point set. It is easy to check that this

kind of Möbius transformation has the form [And07, Theorem 2.26]

m(z) =
az + b

cz + d

where a,b,c,d ∈ R such that ad− bc = 1 and its corresponding matrix form is

SL2(C) = {
[
a b
c d

]

|a, b, c, d ∈ R, ad− bc = 1}

The standard hyperbolic distance ρ for the Pointcaré disk model is computed using the

following formula: ∀z1, z2 ∈ H

cosh ρ(z1, z2) =
2‖z1 − z2‖2

(1− ‖z1‖2)(1 − ‖z2‖2)
+ 1

This formula shows that the hyperbolic distance can be obtained from the Euclidean dis-

tance.

The main property of hyperbolic geometry is the exponential expansion of space. For

example, in the hyperbolic plane, the area of a r-radius disc grows as ∼ er. Consequently, if

nodes are uniformly or quasi-uniformly distributed over a two-dimensional hyperbolic disc,

their density grows exponentially with the Euclidean distance from the disc center in terms

of Euclidean geometry.

R. Kleinberg [Kle07] proposed a method to embed an n-node graph in the hyperbolic

plane to get the virtual coordinate for each node. The main property of hyperbolic geom-

etry, as we mentioned, is the exponential expansion of space: expanding much faster than

Euclidean spaces. Hyperbolic plane is thus metrically equivalent to an e-ary tree, i.e., a
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tree with the average branching factor e. In fact, it can be thought of as the continuous

version of a tree. Kleinberg used this fact to embed a spanning tree T of the original graph

G in the hyperbolic plane. The algorithm proposed in [Kle07] found a greedy embedding

of an infinite d0-regular tree, where d0 is the maximum degree of G. The nodes of T were

then identified with the embedded nodes of the infinite d0-regular tree built. By doing this,

the greedy embedding of T is obtained. This embedding is also a greedy embedding of G.

Through the usage of greedy embedding, greedy routing is guaranteed to be successful in

finding a route to the destination as long as such a route exists.

However, the coordinates obtained are not scalable since the coordinates in the hyperbolic

plane require n bits to describe one node. This implies that even though the number of

entries in the route table is scalable (equal to the degree of the node), the size of each entry

is not. In addition, the maximum degree d0 has to be fixed; otherwise, the coordinates of all

nodes in the network have to be changed. It is therefore not suitable for dynamic networks.

A. Cvetkovski et al. [CC12] optimized the procedure of [Kle07] by making use of topolog-

ical and geometric properties of greedy embeddings to decrease the hop stretch of a greedy

path. They found that the average node degree of an input graph does affect the hop stretch

of the embedding. In addition, though the mapping of the spanning tree of an input graph

to the embedded nodes of a d-ary tree in the hyperbolic plane has little impact upon the

stretch, the choice of this particular spanning tree does influence the hop stretch. They

proposed two heuristics: maximum-weight spanning tree (MWST) and minimum-diameter

spanning tree (mDST).

A. Cvetkovski et al. [CC09] presented an algorithm for incremental greedy embedding

of network nodes as they join the network by allocating disjoint subspaces of the hyperbolic

plane in an online fashion. To cope with the disturbance of greedy property by node or

link failures, Andrej Cvetkovski et al. also proposed a generalized greedy routing called the

gravity pressure (GP) routing. The GP routing normally forwards packets to the neighbor

that provides most positive progress towards the destination. When a packet reaches a local

minimum, the GP routing forwards the packet to the neighbor that provides least negative

progress towards the destination.

This GP routing does not require precomputation or maintenance of special subgraphs

(for example, planar subgraphs). In addition, the GP routing is independent of the choice

of the underlying metric space as well as the choice of whether to use physical or virtual

coordinates.

However, it has the following issues:
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Figure 3.3: The problem with GP routing: unbounded worst-case stretch
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• each node iterates over each of the neighbors in the order first specified by the distance

to the destination and then specified by the number of visits so far if the distance values

are equal;

• backtracking has to be performed if in the wrong direction;

• a packet may traverse a very long path before reaching its destination. One of the

causes is shown in the Figure 3.3.

In Figure 3.3, we assume that d(u, vdest) < d(m1, vdest) < d(m2, vdest) < d(m3, vdest) <

d(m4, vdest) < d(m5, vdest), and assume that only the neighbor m5 has a path to vdest and

all other neighbors do not have paths to vdest. Since Visits[m1] = Visits[m2] = Visits[m3] =

Visits[m4] = 0, we set Visits[u] = 1 and forward to m1. Since m1 does not have a path to

vdest, we set Visits[m1] = 1 and backtrack to u. Now u has to choose another neighbor.

Since Visits[m2] = Visits[m3] = Visits[m4] = 0, we set Visits[u] = 2 and forward to m2.

Since m2 does not have a path to vdest, we backtrack to u and set Visits[m2] = 1. We do the

same thing to m3. Now Visits[u] = 3. Since Visits[m4] = 0, we set Visits[u] = 4 and forward

to m4. After one loop, Visits[u] = 4 and Visits[n1] = Visits[n2] = 1 and m4 has to forward

to n1 and loop once again. It takes 4 loops before Visits[u] = Visits[n1] = Visits[n2] = 4.

Suppose d(u, vdest) < d(m4, vdest) < d(n1, vdest) < d(n2, vdest) and only at that time can we

backtrack to u. These 3 extra loops are totally a waste of time.

In order to help reduce the amount of traffic incurred by the backtracking when the

greedy property is partially destroyed, we use a blacklist to record nodes that are not in

the right direction from the source to the destination node. This list of nodes should be

checked to decide upon the next-hop node. If the next-hop node chosen by the current node

32



www.manaraa.com

is included in this list, the packet will not be passed on to that node. The current node

then chooses another node. This procedure continues until the next-hop node chosen is not

in the list. We will find the node not in the list, as long as there exists a path between

the source and destination. For example, in figure 3.3, the first packet from u to vdest is

first forwarded to m1. When it is returned to u, we record m1 in the blacklist. We do the

same to m2, m3, and m4. Subsequent packets from u to vdest will not enter m1, m2, m3,

and m4. By using the blacklist, unnecessary detours are largely avoided by later packets.

According to our evaluation, the maximum stretch is improved by 21 times, while the average

stretch is improved by 3 times on average. There are drawbacks with this approach: more

computation time is incurred at each node to access and update the blacklist before packets

can be forwarded, and extra bits in a packet header are added to record the current content

of the blacklist.

One way to avoid these drawbacks is to resort to flooding when a packet reaches a local

minimum. The one-hop lookahead heuristic can be used to reduce the amount of flooding.

Moreover, the nodes of degree one, which is not the final destination, need not be sent the

packet during the flooding phase.

Algorithm 1 Forward packet at node u

Input: packet P and node u
1: if u == pkt.dest then

2: done
3: else

4: m1 = argmin
n∈N(u)

d(n, pkt.dest)

5: d1min = d(m1, pkt.dest)
6: (p,m2) = argmin

n∈N(u),n′∈N(n)
d(n′, pkt.dest)

7: d2min = d(m2, pkt.dest)
8: δ = (pkt.mode == GRAVITY ? d(u, pkt.dest) : pkt.dv)
9: if d1min < δ then

10: pkt.mode = GRAVITY
11: forward to m1

12: else if d2min < δ then

13: pkt.mode = GRAVITY
14: forward to p
15: else

16: pkt.dv = d(u, vdest), pkt.mode = FLOOD
17: for m ∈ N(u) with deg(m) > 1 do

18: make a copy of packet P and forward it to m
19: end for

20: end if

21: end if
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This restricted flooding, equipped with the above optimizations, can still result in a huge

number of packet copies in a network when a lot of nodes are removed, for example, 25%

of the total number of nodes. However, the occurrence of the simultaneous failure of the

≥ 10% of links in any large network is rather rare. Although greedy forwarding is subject to

the failure of nodes with large degree values, these nodes usually have thousands of routers

within them, and the occurrence of the simultaneous failure of all the routers within one of

these nodes is also rather rare [PKBV10].

The authors in [BKC09,BK09,KPBV09,PKBV10] showed that the efficiency of greedy

forwarding is maximized in the Internet-like synthetic network generated using the Ein-

steinian model [KPVB09,KPK+10]. In [BPK10] the authors tried to find the coordinates

in a hyperbolic space for each AS of the Internet, so that the likehood that the observed In-

ternet topology has been produced by the Einsteinian model is maximized. This is achieved

by computing the parameters of the Einsteinian model using the observed Internet topol-

ogy. Greedy forwarding based on the inferred coordinates thus achieves the high success

ratio. Low greedy path stretch, indicating the congruence between hyperbolic geodesics

and topologically shortest paths [PKBV10,KPVB09,KPK+10], and robustness in the face

of network dynamics are also achieved. The amount of routing information maintained at

each AS as well as the amount of routing communication overheads exchanged upon any

change of the network topology are minimized, which means this hyperbolic mapping of the

Internet achieves routing efficiency close to theoretically optimal.

Though the network growth model has been proposed for the Internet-like synthetic

network generated using the Einsteinian model, there is currently no feasible network growth

model for the real AS-level Internet. The question of “how do newly added ASs compute their

coordinates in the hyperbolic plane without resorting to global knowledge of the network

topology, so that the resulting embedding is still congruent with the hyperbolic plane to

guarantee the efficiency of the greedy forwarding" has not been answered yet.
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4 | Metric Based on BGP

Hierarchical, topology-based addressing is a fundamental component of the internetwork

today, and is widely regarded as necessary for routing scalability. The purpose of addressing

hierarchy is abstraction. Hierarchically structured addresses make it possible to treat groups

of destinations as a single unit and identify them by a single label, typically a prefix common

to all the addresses in the group, which helps abstract out topological details of remote parts

of a given network. This improves scalability in both the control plane and the data plane.

The savings in the control plane come from aggregating destination advertizements that

share a common prefix, thus reducing communication costs. The savings in the forwarding

plane result from having more destinations represented in the forwarding table by a single

entry (corresponding to the aggregated route advertizement). The primary cost of this

abstraction is that the paths followed by packets may in some cases be longer than is strictly

necessary [PU89].

Achieving these benefits depends on the way addresses (prefixes) are assigned to desti-

nations in the network. To maximize benefit, the following locality property should hold:

addresses of destinations that are closer to each other in the network should share a longer

common prefix. In the Internet today, the routing hierarchy has two levels. At the bot-

tom (intradomain) level, prefixes (i.e., blocks of addresses) are assigned to networks, and

individual hosts on the same network always have addresses with the same prefix, and thus

locality generally holds at that level. At the top (interdomain) level, however, addressing is

much less tied to the topology. That is, in the graph whose nodes correspond to ASs and

whose edges denote paths used to forward packets, prefixes may not be assigned to nodes

in a manner that allows aggregation. Thanks to CIDR, most customer ASs obtain their

address blocks from their provider ASs—their neighbors in the AS graph—so some locality

is present. However, for various reasons, including prefix assignments that predate CIDR,

it would be surprising if the current configuration were optimal.

All of which brings up the questions we want to address in this chapter: How much local-

ity is there in the assignment of prefixes to ASs in the current Internet? How far from optimal

35



www.manaraa.com

is the current assignment? In other words, how much is hierarchical addressing buying us

(at the interdomain level), and how much could be gained by a from-scratch reassignment of

prefixes? Answering these questions requires precise definitions of both locality and optimal-

ity of prefix assignment, as well as a precise notion of semantic equivalence between prefix

assignments. These questions are critical to next-generation networking because a number

of proposals have been put forward regarding the use of non-topology-based addressing for

global routing and forwarding [YCB07, PCG04, CCK+06, KCR08, CGP07, CCS96]. Quan-

tifying the degree to which the current Internet benefits from hierarchical, topology-based

addressing may help in designing next-generation routing and forwarding mechanisms. We

stress that we are not proposing that addresses in the Internet actually be reassigned to

improve locality. We are simply interested in the above questions as a way of assessing the

importance of topology-based addressing at the interdomain level.

4.1 Defining BGP-based Locality Metric

Here we use the cost of advertising the prefixes associated with an AS to other ASs as a proxy.

Intuitively, we want to measure something like the “entropy” of the addressing assignment.

We take a simple approach: we calculate how much information must be conveyed across

the edges of the AS graph to ensure that all prefixes are reachable. We can measure this

directly from the BGP routing data. The following definitions are all relative to a collection

of BGP route advertizements (like the Route Views data sets).

In what follows, i and j denote AS numbers. We denote links (directed edges) in the AS

graph as pairs (i, j);

As we mentioned before in Section 2.3, the primary function of a BGP speaker is to

exchange network reachability information with other BGP speakers. This network reacha-

bility information includes the set of destinations and the list of ASs that are traversed to

reach these destinations. We say an edge (i, j) exists if and only if the sequence j, i occurs in

the AS path of some BGP advertizement of network reachability information.1 The letters

p and q denote prefixes, while x and y denote AS paths appearing in some advertizement.

AllPrefs denotes the set of all prefixes advertized. For path x, (i, j) ∈ x means that i and j

occur in that order in x. For any prefix p ∈ AllPrefs, paths(p) denotes the set of AS paths

over which p is advertized, i.e., the set of AS paths that occur in any announcement.

For each link (i, j) in the AS graph, we associate a set of prefixes, namely all those that

1Note that, for this part of the discussion, we consider edges to be directed.
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are advertized across that link. This set is denoted by destprfs(j, i). That is, for any p:

p ∈ destprfs(i, j) ≡ ∃x : x ∈ paths(p) ∧ (j, i) ∈ x

Now we define codeLen(p) to be the number of bits needed to encode the prefix p for

transmission. A simple coding scheme suffices for our purposes. For a prefix q of length L,

1 ≤ L ≤ 32, we define codeLen(q) to be 5 + L (that is, 5 bits for the length plus the prefix

itself).

We define advbits(i, j) to be the total number of bits needed to encode the prefixes in

destprfs(i, j):

advbits(i, j) =
∑

p∈destprfs(i,j)

codeLen(p)

Finally, we define TCost to be the number of bit-hops, summed over all links:

TCost =
∑

i,j

advbits(i, j)

This is a cost measure, so smaller is better.

We would like to consider the trajectory of this cost measure over time, using different

samples of BGP data. To do so, however, we need a way to normalize across graphs; the

AS graph changes over time. In order to support at least rough comparison across graphs,

we normalize TCost by dividing it by the number of links (edges) in the AS graph.

This metric is useful for measuring the extent to which efficiency changes over time.

However, it does not address the question that originally motivated our work: how much

does hierarchical addressing buy us at the interdomain level? Answering that question

requires a notion of an optimal (or minimum-cost) address assignment. The next section

details some ways to construct such an assignment.

4.2 Defining Optimality for BGP-based Locality Metric

We would like to construct a minimal-cost address assignment for a given AS graph and

total address demand. However it is (probably) too hard to be feasible due to the following

reasons: AS-level graphs have more complex structure than trees; business relationships

between nodes are confidential and complex (varying with space, time and prefix), and

inferring them is very hard; the address space is limited. Therefore we have to resort to

heuristics. We assign prefixes to ASs from scratch in a manner that preserves the semantics

of a given RIB, while lowering cost by attempting to maximize aggregation (as it would

occur in BGP). Specifically, we assign prefixes so that:
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• The address demand of each AS is satisfied by the prefix(es) assigned to that AS,

i.e., the new prefix assignment covers at least as many addresses as the original prefix

assignment.

• The policies of each AS with respect to route advertizements are respected. That is,

we preserve distinctions among prefixes reflected in the source data.

• TCost is minimized.

Our approach is heuristic. We do not attempt to find a true minimum-cost assignment,

as that would be prohibitively expensive. Rather, we compare several different approaches

that preserve semantics with varying levels of strictness.

The basic approach is as follows. We define an equivalence relation on prefixes, so that

two prefixes are considered equivalent if and only if they have the same semantics with

respect to the BGP data. This allows us to identify candidates for aggregation. We then

assign prefixes so that the aggregate demand represented by an equivalence class of prefixes

is satisfied. There is more than one way to do this, however, and we consider several

alternatives.

4.2.1 Prefix Equivalence

We consider the conditions under which prefixes p and q can be considered semantically

equivalent—that is, for the given source data, the two prefixes are indistinguishable with

respect to policy. These conditions are based on the criteria provided by BGP for selecting

prefixes.

We define the following conditions for a given set of BGP advertizements. p and q:

Path equivalence. paths(p) = paths(q)

Next Hop equivalence. For every BGP announcement a of p with AS path x and every

announcement b of q with AS path x, the next hop attribute of a equals the next hop

attribute of b. (The “next hop" attribute of a BGP announcement is the IP address

of the next hop on the path.)

MED equivalence. For every BGP announcement a of p with AS path x and every an-

nouncement b of q with AS path x, the Multi-exit Discriminator attribute of a equals

the Multi-exit Discriminator attribute of b. (The “Multi-exit Discriminator” attribute

is used for so-called hot/cold potato routing when there are multiple connections be-

tween ASs.)
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In our experiments we use three variants of this definition, based on the above conditions

(beginning with the strictest):

Definition 1. Prefixes p and q are equivalent (belong to the same equivalence class) iff they

satisfy all three equivalence conditions.

Definition 2. Prefixes p and q are equivalent if and only if they satisfy both Path equiva-

lence and Next Hop equivalence.

Definition 3. Prefixes p and q are equivalent if and only if they satisfy Path equivalence.

Our next step is to assign prefixes to each AS to cover the total address demand of that

AS. In the next subsection we show two ways to do that, given a set of prefix equivalence

classes associated with each AS; the two vary in their aggressiveness about aggregation

within and across ASs. Then we must define the set of prefixes that will be advertized over

each link (i, j) in the AS graph, i.e., destprfs(j, i).

In what follows, the address demand of a prefix equivalence class is the amount of

address space covered by all the prefixes in the class. For example, an equivalence class

{4.228.64.0/20, 192.168.3.0/24} has a total demand of 212 + 28 = 4352.

4.2.2 Assigning Prefixes

We present two ways to assign prefixes to ASs so as to maximize aggregation. We dub them

One Prefix Per Class (OPPC) and Provider-Based (with and without aggregation across

ASs).

The OPPC Scheme simply assigns a single prefix of minimum adequate length to each

equivalence class. The number of addresses contained in this single prefix may be larger

than the actual address demand of the prefix equivalence class when the address demand

of this class is not a power of 2. No attempt is made to make prefixes assigned to the

same AS contiguous/aggregatable, and customer-provider relationships among ASs are not

considered. This is the least-aggressive reasonable prefix assignment strategy. In general,

an AS will still have multiple prefixes assigned using this strategy.

The Provider-Based scheme is more aggressive. It is based on the provider-customer

relation on ASs. The idea is to let each provider assign prefixes to its customer ASs, making

sure that the provider’s prefix is large enough to cover the address demand of both the

provider and its customers. This provides maximum opportunities for aggregation across

ASs. The procedure is as follows
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Step 1 Build trees. The root of each tree is a tier-1 AS. (We use connectivity information

to identify tier-1 ASs, and verify using outside information.) Each link in a tree

represents a provider-to-customer relationship. We do not include any peer-to-peer

information into the trees. If a customer x has more than one provider, we pick the

provider with the largest degree assuming the degree of an AS is closely related to the

size of an AS [TDG+01]. We infer AS relationships using the method of Dimitropoulos

et al. [DKF+07].) Add an imaginary dummy root, which is the parent of all Tier-1s.

Note as mentioned in [DSK08], there may exist AS relationship cycles in the Internet.

Step 2 Calculate the address demand for each AS in each tree from the bottom up. The

demand for a leaf node is the sum of the demands of its associated equivalence classes.

The demand for a provider (nonleaf) node is the sum of its childrens’ demands plus

the sum of the demands of its associated equivalence classes. If the prefixes advertized

by the provider belong to more than one class, we pick the class to whose address

demand we add the sum of the childrens’ demands so that the binary form of the

addition result contains the fewest number of 1s.

Step 3 Assign prefixes from top down. The dummy root is assigned 0.0.0.0/1 and 128.0.0.0/1.

We assign to the direct children of the root (Tier-1 ASs), keeping any remaining pre-

fixes that are left unassigned for the next step. Then we assign prefixes from parent

to child, as follows. First determine the child’s minimum acceptable prefix length; if

the nth msb of the binary representation of the node’s address demand is set, a prefix

of length 32 − n is needed. If there exist such blocks in the prefix set of the parent,

assign any one of them to the child. If there exists a shorter prefix in the parent’s

set, break it into the minimum number of longer prefixes necessary to cover the child

demand and allocate those to the child, leaving the remaining pieces in the parent’s

set. Otherwise we have to assign more than one prefix from the parent prefix set in

order to cover the child demand, and we want this number to be as small as possible.

Step 4 Assign prefixes that have not been assigned to Tier-1 ASs (and thus have not been

assigned to any node in trees) from Step 3 to any ASs that do not appear in trees,

using the same assignment method as in the previous step. The reason why there exist

ASs not appearing in the trees is that those ASs have peer-peer relationships but do

not have customer-provider relationships with other ASs in our tree built in Step 1.
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4.2.3 Computing destprfs(·)

In order to compute TCost once we have assigned fresh prefixes using the above methods,

we must compute destprfs(j, i) for each link (i, j) in the AS graph. However, this requires

that we determine exactly which set of prefixes will be advertized across each link. While it

is straightforward to compute this from actual BGP data, now we are dealing with artificial

prefix assignments and we need to define what cross-AS aggregation will occur.

For the Provider-Based assignment scheme, we consider two possibilities: one where

aggregation occurs across ASs (Aggregate-Across-ASs, PBAAA), and one where it does

not (Not-Aggregate-Across-ASs, PBNAAA).

For the PBAAA: intuitively, we want to use the same tree that was used for address

assignment, and aggregate prefixes upward (i.e., across customer-provider links) in that tree,

adjusting destprfs(i, j) as we go.

For each distinct equivalence class denoted by [p], where p represents any prefix belonging

to this class and for each unique path x ∈ paths(p), we do the following. Suppose there are

n ASs in x; reverse the path and denote the result by kn, kn−1, ..., k2, k1. The corresponding

link sequence is (kn, kn−1), (kn−1, kn−2), . . . , (k2, k1). Let the set of prefixes assigned to ki

be Pki (1 ≤ i ≤ n). We will work bottom-up in the tree used when addresses were allocated,

that is, from customer to provider. Let the set of prefixes to be advertized across the

current link (ki, ki−1) be denoted by PSET (ki) (2 ≤ i ≤ n). Set i to n, and initialize

PSET (kn) = [p].

• update destprfs(ki, ki−1) as follows:

destprfs(ki, ki−1) = destprfs(ki, ki−1)
⋃

PSET (ki) (4.1)

• update PSET (ki−1) as follows: if ki−1 is the parent of ki, then for any prefix q in

PSET (ki) if all ki−1’s children each of which has the prefix set containing some pre-

fix(es) assigned from the same prefix q′ which was assigned to ki−1 in our top-down

prefix reassignment before q′ is further broken down to be assigned to ki−1’s children

(for example, assigning q to ki) are single-homed, replace q with q′ in PSET (ki−1).

• Decrement i.

We iterate these steps repeatedly until ki−1 is a customer or peer of ki (i.e., the path starts

downward in the tree), or i reaches 2. If i > 2, we only perform the first step repeatedly

until i = 2.
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For the PBNAAA and the OPPC scheme no cross-AS aggregation occurs; each prefix

is advertized across all links in the set of AS paths of that equivalence class.

The detailed algorithm for calculating address demand from bottom up, assigning pre-

fixes from scratch based on customer-provider relationships and computing destprfs(j, k) for

PBAAA scheme is outlined in algorithm 2 to algorithm 5.

Here we use the method proposed in [SARK02a] to find the core of Internet and the Tier-

1 ASs constituting this core. We infer AS relationships using the method of Dimitropoulos

et al. [DKF+07]. With the above two methods we can build trees rooted at each of the

Tier-1 ASs. Each tree node corresponds to a distinct AS and has the following fields: asNo,

children, layerNo, parent, prefsPerClassArr, ASPathsPerClassArr, addrDemPerClassArr,

newPrefsBefAssgnToChild, and newPrefsAftAssgnToChild. Among them, prefsPerClassArr

and ASPathsPerClassArr of each AS are initialized according to different definitions of equiv-

alence class. newPrefsBefAssgnToChild is obtained from the parent node and before prefixes

are assigned to any of its children, and newPrefsAftAssgnToChild is equal to what is left in

newPrefsBefAssgnToChild after prefixes are assigned to all of its children according to their

address demands. Each entry in newPrefsBefAssgnToChild and newPrefsAftAssgnToChild

has two fields: pref and classIdx (the class this prefix belongs to). The reason we keep

prefixes before being fragmented to be assigned to child nodes in the prefix field of the en-

try in newPrefsBefAssgnToChild is for the convenience of computing destprfs(x, y) for the

PBAAA scheme. We denote the binary representation of a number i by (i)2. We set the root

node as: r.newPrefsBefAssgnToChild = {〈0.0.0.0/1,−1〉, 〈128.0.0.0/1,−1〉}; r.asNo = −1;
r.children equal to the set of Tier-1 ASs; r.layerNo = 1; r.parent = −1; r.prefsPerClassArr

equal to null; r.ASPathsPerClassArr equal to null; r.addrDemPerClassArr[0] = 0. Suppose

p is a prefix. Then getPrefLength(p) is a function to return the length of p and we omit the

implementation details for this function.

We give a detailed example shown in Figure 4.1 assuming the prefixes associated with

each AS belongs to one single equivalence class. ASx is the provider of both ASy and ASz.

Both ASy and ASz are single-homed to ASx. The resulted relabeled graph after OPPC,

PBAAA and PBNAAA are applied respectively are shown in Figure 4.2 to Figure 4.4. The

address demand of each AS as well as the routing policies are well preserved. The only

difference between Figure 4.3 and Figure 4.4 lies in the value of destprfs(x,w). Note: AAA

stands for Aggregate-Across-ASs.
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AS w

AS x

AS y AS z

CLASS L ={128.163.192/18, 192.128.1/24}
CLASS K = {196.128.1/24, 204.163.1.192/26}

CLASS J = {196.160.11/24}
AS PATH: w x

AS PATH: w x z
AS PATH: w x y

DESTPRFS(y,x)={128.163.192/18,192.128.1/24} DESTPRFS(z,x)={196.128.1/24, 204.163.1.192/26}

DESTPRFS(x,w)={196.128.1/24, 204.163.1.192/26,
128.163.192/18, 192.128.1/24, 196.160.11/24}

Figure 4.1: Partial AS-level graph

AS w

AS x

AS y AS z

CLASS J = {196.160.11/24}
AS PATH: w x

AS PATH: w x z
AS PATH: w x y
CLASS L ={128.163.128/17}

CLASS K = {196.128.2/23}

DESTPRFS(y,x)={128.163.128/17} DESTPRFS(z,x)={196.128.2/23}

DESTPRFS(x,w)={128.163.128/17, 196.128.2/23, 196.160.11/24}

Figure 4.2: Reassign prefixes using OPPC. No AAA during advertizement.
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AS w

AS x

AS y AS z

AS PATH: w x z
AS PATH: w x y
CLASS L ={128.163.128/18, 128.163.193/24}

CLASS K = {128.163.194/24,128.163.192.0/26}

AS PATH: w x

DESTPRFS(y,x) = {128.163.128/18, 128.163.193/24} DESTPRFS(z,x) = {128.163.194/24, 128.163.192/26}

DESTPRFS(x,w) = {128.163.128/17}

128.163.200/21, 128.163.196/22, 128.163.195/24,
128.163.192.128/25, 128.163.192.64/26}

CLASS J = {128.163.224/19, 128.163.208/20,

Figure 4.3: Reassign and advertize prefixes using PBAAA

AS w

AS x

AS y AS z

AS PATH: w x z
AS PATH: w x y
CLASS L ={128.163.128/18, 128.163.193/24}

CLASS K = {128.163.194/24,128.163.192.0/26}

AS PATH: w x

DESTPRFS(y,x) = {128.163.128/18, 128.163.193/24}

128.163.200/21, 128.163.196/22, 128.163.195/24,
128.163.192.128/25, 128.163.192.64/26}

CLASS J = {128.163.224/19, 128.163.208/20,

128.163.200/21, 128.163.196/22, 128.163.195/24,

DESTPRFS(x,w) = {128.163.224/19, 128.163.208/20,

128.163.128/18, 128.163.193/24, 128.163.194/24,128.163.192.0/26}
128.163.192.128/25, 128.163.192.64/26,

DESTPRFS(z,x) = {128.163.194/24, 128.163.192.0/26}

Figure 4.4: Reassign and advertize prefixes using PBNAAA
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Algorithm 2 setOwnAddrDemPerClass(T ): initialize addrDemPerClassArr field of each
node of the tree T to be its own address demand
Input: the tree T built according to p2c or c2p AS relationships
Output: each node’s own address demand
1: find the maximal layerNo denoted by maxLayerNo.
2: currLayerNo = 2
3: while currLayerNo ≤ maxLayerNo do

4: find nodes at the currLayerNo layer, denoted by nodesAtCurrLayer
5: for each node u in nodesAtCurrLayer do

6: for i = 0 to u.prefsPerClassArr.size− 1 do

7: ownAddrDemOfOneClass = 0
8: for each p in u.prefsPerClassArr[i] do

9: ownAddrDemOfOneClass+ = (long)1 << (32 − getPrefLength(p))
10: end for

11: u.addrDemPerClassArr[i] = ownAddrDemOfOneClass
12: end for

13: end for

14: currLayerNo+ = 1
15: end while
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Algorithm 3 calcSubTreeAddrDemPerClass(T ): given the tree T built, calculate the ad-
dress demand of each node to be the sum of its demand plus those of its descendants, and
update its addrDemPerClassArr field. When the address demand of its descendants are
added, try to pick one of its classes so that the minimal number of prefixes is required to
cover the sum
Input: the tree T built according to p2c or c2p AS relationships
Output: the address demand of each node of each tree to be the sum of its demand plus

those of its descendants
1: setOwnAddrDemPerClass(T )
2: find the maximal layerNo denoted by maxLayerNo.
3: currLayerNo = maxLayerNo
4: while currLayerNo > 1 do

5: find nodes at the currLayerNo layer, denoted by nodesAtCurrLayer
6: divide nodesAtCurrLayer into groups with each group of nodes having the same parent

and different groups having different parents
7: for each of the above groups denoted by nodesWithSameParent do

8: totalChildAddrDem = 0
9: prtOfGrp = nodesWithSameParent[0].parent

10: for each node u in nodesWithSameParent do

11: for i = 0 to u.addrDemPerClassArr.size− 1 do

12: totalChildAddrDem+ = u.addrDemPerClassArr[i]
13: end for

14: end for

15: minNumOfOnes = ((long)1 << 32) − 1
16: for i = 0 to prtOfGrp.addrDemPerClassArr.size− 1 do

17: ownAddrDemOfOneClass =
18: prtOfGrp.addrDemPerClassArr[i] + totalChildAddrDem
19: if # of 1’s contained in the (ownAddrDemOfOneClass)2 < minNumOfOnes then

20: minNumOfOnes = # of 1’s contained in the (ownAddrDemOfOneClass)2
21: indx = i
22: end if

23: end for

24: prtOfGrp.addrDemPerClassArr[indx]+ = totalChildAddrDem
25: end for

26: currLayerNo− = 1
27: end while

46



www.manaraa.com

Algorithm 4 assignPrfsToChildren(x): assign prefixes from x.newPrefsBefAssgnToChild
to cover the demand of each of the child nodes y, and set its y.newPrefsBefAssgnToChild
accordingly. After that, we set x.newPrefsAftAssgnToChild to be what is left
in x.newPrefsBefAssgnToChild. For leaf node x, x.newPrefsAftAssgnToChild =
x.newPrefsBefAssgnToChild. Note: x.newPrefsBefAssgnToChild stays the same.
Input: x.newPrefsBefAssgnToChild and the set of x’s child nodes
Output: y.newPrefsBefAssgnToChild of each child node y and x.newPrefsAftAssgnToChild

after x assigns prefixes to all of its children
1: if the child node set is empty then

2: x.newPrefsAftAssgnToChild = x.newPrefsBefAssgnToChild
3: else

4: sort x.newPrefsBefAssgnToChild according to the ascending order of the length of
each entry’s prefix field

5: deep copy the sorted x.newPrefsBefAssgnToChild to temporary variable sortedPrefs
6: mask = 0x80000000
7: for i = 1 to 32 do

8: for each u in the child node set do

9: for k = 0 to u.addrDemPerClassArr.size− 1 do

10: if mask&u.addrDemPerClassArr[k] 6= 0 then

11: if ∃j : getPrefLength(sortedPrefs[j].pref) = i then

12: u.newPrefsBefAssgnToChild← sortedPrefs[j]
13: sortedPrefs = sortedPrefs \ {sortedPrefs[j]}
14: else if ∃j : i ∈ [getPrefLength(sortedPrefs[j].pref),
15: getPrefLength(sortedPrefs[j + 1].pref)] then

16: break up sortedPrefs[j].pref into prefixes of length i denoted by {p1, ..., pn},
17: where n = (long)1 << (i− getPrefLength(sortedPrefs[j].pref))
18: u.newPrefsBefAssgnToChild← 〈pm, k〉, where 1 ≤ m ≤ n
19: sortedPrefs =
20: sortedPrefs∪{〈p1, k〉, ..., 〈pm−1, k〉, 〈pm+1, k〉, ..., 〈pn, k〉}\{sortedPrefs[j]}
21: resort sortedPrefs according to the ascending order of the length of each
22: entry’s prefix field
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23: else

24: assignedAddrDem = 0
25: for j = 0 to sortedPrefs.size− 1 do

26: u.newPrefsBefAssgnToChild← sortedPrefs[j]
27: assignedAddrDem+ = (long)1 << (32 −

getPrefLength(sortedPrefs[j].pref))
28: if assignedAddrDem == (long)1 << (32 − i) then

29: sortedPrefs = sortedPrefs \ {sortedPrefs[0], ..., sortedPrefs[j]}
30: break
31: end if

32: end for

33: end if

34: end if

35: end for

36: end for

37: mask >>= 1
38: end for

39: x.newPrefsAftAssgnToChild = sortedPrefs
40: end if
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Algorithm 5 calcAvgBitsPerLnk(): given the tree T , the average number of bits advertized
per link using the PBAAA scheme to emulate what BGP does. Normalization is performed
just before the RETURN statement such that the value of our BGP-based locality metric
is not affected by the graph size.
Input: u.newPrefsBefAssgnToChild and u.newPrefsAftAssgnToChild of each AS u
Output: the average number of bits advertized per link using BGP and PBAAA scheme
1: find the maximal layerNo denoted by maxLayerNo.
2: currLayerNo = 2
3: while currLayerNo ≤ maxLayerNo do

4: find nodes at the currLayerNo layer, denoted by nodesAtCurrLayer
5: for each node u ∈ nodesAtCurrLayer do

6: for i = 0 to u.newPrefsAftAssgnToChild.size− 1 do

7: p = u.newPrefsAftAssgnToChild[i].pref
8: classIdx = u.newPrefsAftAssgnToChild[i].classIdx
9: for each x in u.ASPathsPerClassArr[classIdx] do

10: reverse the path x denoted by x′

11: for each link (j, k) in x′ do

12: destprfs(j, k) = destprfs(j, k) ∪ {p}
13: if (j, k) is not the last link and
14: k is j’s parent and k’s children are single-homed and
15: there exists a q ∈ k.newPrefsBefAssgnToChild s.t. q ≺ p then

16: p = q
17: end if

18: end for

19: end for

20: end for

21: end for

22: currLayerNo+ = 1
23: end while

24: totalbits = 0
25: for (i, j) ∈ E(G) do

26: bits = 0
27: for p ∈ destprfs(i, j) do

28: bits = bits + (getPrefLength(p) + 5)
29: end for

30: totalbits = totalbits + bits
31: end for

32: return totalbits/|E(G)|
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Algorithm 6 Given the tree T built according to p2c or c2p AS relationships and
prefsPerClassArr of each node of T , first calculate the address demand of each AS; then
assign prefixes from scratch while preserving the address demand of each AS and the se-
mantics of routing policies; finally calculate the average number of bits advertized per link
using BGP and PBAAA scheme
Input: T
Output: the average number of bits advertized per link
1: setOwnAddrDemPerClass(T )
2: calcSubTreeAddrDemPerClass(T )
3: r.newPrefsBefAssgnToChild = {〈0.0.0.0/1,−1〉, 〈128.0.0.0/1,−1〉}
4: r.asNo = −1
5: r.children equal to the set of Tier-1 ASs
6: r.layerNo = 1
7: r.parent = −1
8: r.prefsPerClassArr equal to null
9: r.ASPathsPerClassArr equal to null

10: r.addrDemPerClassArr[0] = 0
11: find the maximal layerNo denoted by maxLayerNo.
12: currLayerNo = 1
13: while currLayerNo ≤ maxLayerNo do

14: find nodes at the currLayerNo layer, denoted by nodesAtCurrLayer
15: for each node u ∈ nodesAtCurrLayer do

16: assignPrfsToChildren(u)
17: end for

18: currLayerNo+ = 1
19: end while

20: print calcAvgBitsPerLnk()
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5 | Results for BGP-based Locality Metric

Here we present the results of our experiments using three (increasingly strong) definitions

of prefix semantic equivalence, two methods of assigning fresh prefixes to the AS graph and

three methods of advertising them.

R. Cohen et al. in [CR06] argued that a small number of BGP routing tables from

different sources (less than 10) reveals a significant number of links and incrementing the

number of tables used only discovers limited amount of hidden links. Therefore, we only use

120 routing tables for each year with 10 tables per month (5 from Route Views archives and

5 from RIPE NCC’s RIS database ). P. Mahadevan et al. [MKF+06b] argued that there are

only minor differences in the aspects of node and link sets of the AS-level graphs derived

from BGP routing tables and BGP updates, respectively. Therefore, we do not use BGP

updates here.

As in [HB96], we remove private ASes [MKF+06b] ranging from 64512 to 65535 because

they are not unique and normally they should not be leaked to a global BGP table. To

reduce the impact of BGP misconfigurations [MWA02], which can affect 200-1200 BGP

table entries each day, we only keep the paths that appear in all of the routing tables used

in our experiments as in [DKF+07].

R. Cohen et al. in [CR06] argued that when routing policy is considered, around 80%

to 90% of the customer-provider links are discovered by Route Views data and peer-to-peer

links are mostly not revealed. X. Dimitropoulos et al. in [DKF+07] analyzed the reason

why peer-to-peer links are not generally revealed by the existant BGP collectors. Since

prefixes learned from a peer AS are not exported to any of its providers, a peer-to-peer

link can only be observed by the customers or siblings of the two p2p ASs. Therefore, in

order to make the peripheral peer-to-peer links visible, we need far more BGP collectors

peering with these peripheral ASs. DIMES [SS05] indicates a shift from a few dedicated

nodes with the sole objective of collecting routing tables, to a large number of hosts running

background measurement agents, which helps reveal peripheral peer-to-peer links. However,

DIMES lacks control plane information that we make use of and, since mapping router IP

51



www.manaraa.com

address to AS number using longest prefix matching is very error-prone [ZOW+11], we do

not use any traceroute-derived AS topologies from the DIMES project or from the Coop-

erative Association for Internet Data Analysis (CAIDA)’s Archipelago (Ark) Measurement

Infrastructure [ARK], to solve the problem of hidden peer edges. In addition, we do not use

any public route servers [RS] or looking glasses [LG] since they lack the history information

of BGP data.

Instead, we resort to the IRR database to deal with the visibility of peer-to-peer links. It

still remains an open question about what data source (for example, Route Views + RIPE

NCC’s RIS or IRR) contains the most reliable information about what type of link since

Route Views and RIPE NCC’s RIS reflect the topology seen from the control plane, while

IRR reveals the topology seen from the management plane [MKF+06a]. The limitations of

IRR database include: (1) the information in IRR database can be stale and inaccurate;

and (2) not all ASs are willing to share their peering relationships; and (3) some providers

tend to over-report their peering relationships to make them look more important than they

actually are in the current Internet. We mainly use the RIPE NCC’s IRR database in which

almost all the 6800 registered ASs publish their peering relationships. According to [SF04]

the RIPE NCC’s IRR database is the most accurate registry. Since the IRR database, unlike

RV database, is not affected by the policy, it reveals more peer-to-peer links. We analyze

the policies of ASs in the IRR specified using RPSL and infer AS relationships as in [CR06]

and [SF04]. When there exists the inconsistency of an edge type between using Route Views

+ RIPE NCC’s RIS and using RIPE NCC’s IRR, we label the edge the type inferred by

using Route Views + RIPE NCC’s RIS. For those newly discovered links (i.e., links that

exist in IRR but not in Route Views + RIPE NCC’s RIS) we have to guess the prefixes that

traverse each of them in either direction by the following rules: we export local routes and

the routes from the customers to providers and peers and we export everything from all the

neighbors to siblings and customers.

The basic statistic information in terms of the number of nodes (ASs) and the number

of edges (eBGP sessions) of our input AS-level graph for each year is shown in Figure 5.1.

We say prefix p and q are matched if p is advertized by AS x and q is advertized by

one of the x’s neighboring ASs y and either p ≺ q or q ≺ p is satisfied and we say x and y

are a matched AS pair. Figure 5.2(a) and Figure 5.2(b) show the trends in the number of

matched AS pairs and the number of matched prefix pairs across years respectively. From

Figure 5.3(a) we can see that the number of matched AS pairs keeps decreasing. This can

be explained as follows: given a matched AS pair one AS is usually the other AS’s provider
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Figure 5.1: Statistic information of input AS-level graphs across years

or customer [FL06] and the number of peering links grows more significantly over recent

years than the number of provider-to-customer links [DD11], which means that the number

of matched AS pairs does not grow as quickly as the total number of AS pairs.
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Figure 5.2: number of matched AS/prefix pairs across years

Figure 5.3(a) shows the minimal number of prefixes required to exactly cover the address

demand of each AS by assuming all the prefixes associated with each AS follow the same

routing policies. Figure 5.3(b) shows the actual number of prefixes that are advertized in

the Internet. From Figure 5.3(a), we can see that the gap between the minimal number

of prefixes required to exactly cover the address demand of each AS by assuming all the

prefixes associated with each AS follow the same routing policies and the total number of

prefixes advertized keeps increasing. This can be explained as follows. Each AS peers more

ASs and adopts more complex policies for its prefixes; the number of policies used by each

AS on average is far from one. Figure 5.3(b) indicates the total address demand from ASs

keep increasing.
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Figure 5.3: current and lower bound of # of prefixes and total address demand

In the following sections, we first present some statistics about the equivalence classes

according to the various definitions; this allows calibration of the differences in strictness.

Then, we present TCost/link using various combinations of the methods. Finally, we com-

pare our results with those from the CIDR report [GH], using routing data for September

15th, 2012.

5.1 Equivalence Statistics
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Figure 5.4: statistics for equivalence classes of increasingly more strict definitions

From Figure 5.4 we can see that with the increase in the strictness of the definitions of

equivalence class we obtain more classes with fewer prefixes per class, which means finer

granularity for routing policy, though in terms of both average number of prefixes per class

and total number of classes the differences across these three definitions are not significant.

In addition, the granularity of the BGP routing policy continues to get finer until year 2008

(indicated by more equivalence classes with the smaller number of prefixes per class) and
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has been a little bit coarser since 2008.

One of the reasons for there being more than one prefix in an equivalence class is that

these prefixes belong to different geographical parts (for example, different countries or

different cities). By using GeoLite [Max]—a weekly updated database that maps IPv4

addresses to geolocations, we get the following results in Table 5.1. We cannot find the

Table 5.1: geographic reason for there being >1 prefix in an equivalence class
# of classes in >1 countries/with no country info

2001
# of classes in >1 countries 4236
# of classes with no country info 300
total # of classes 45389

2002
# of classes in >1 countries 3982
# of classes with no country info 213
total # of classes 74602

2003
# of classes in >1 countries 4373
# of classes with no country info 1957
total # of classes 78148

2004
# of classes in >1 countries 4293
# of classes with no country info 17202
total # of classes 95439

2005
# of classes in >1 countries 4278
# of classes with no country info 21904
total # of classes 116024

2006
# of classes in >1 countries 5007
# of classes with no country info 10085
total # of classes 135211

2007
# of classes in >1 countries 4908
# of classes with no country info 11234
total # of classes 175070

2008
# of classes in >1 countries 4322
# of classes with no country info 27030
total # of classes 217124

2009
# of classes in >1 countries 6226
# of classes with no country info 38467
total # of classes 202714

2010
# of classes in >1 countries 9416
# of classes with no country info 10354
total # of classes 212762

geographic information from the GeoLite database for all the prefixes advertized. For those

prefixes for which we find country information, we observe that there are only around 4%

to 9% of classes, each having prefixes belonging to more than one country. Thus, in most

cases, the reason for a class to have more than one prefix is due to previous topology-unaware
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prefix assignment.

5.2 Optimal Assignments: Comparison
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Figure 5.5: average TCost/link across years

Our initial experiment results show we cannot use OPPC to reassign address blocks

from scratch without running out of the 32-bit address space for year 2005 no matter what

definition of equivalence class is used and for year 2006 using definition 2 and definition 3

of equivalence class and for year 2009 and year 2010 using definition 3 of equivalence class.

This is because for a given class of prefixes, the number of addresses covered may not be

equal to a power of two, and, in order to assign a single prefix that covers at least the same

number of addresses, we end up assigning a prefix that covers more addresses than it really

needs to. For each of the above cases we expand the 32-bit address length limit to the 33-bit,

to get a rough idea of what the average TCost/link will be across years.

By using OPPC, PBAAA, and PBNAAA methods to reassign prefixes from scratch with

the routing policies staying unchanged we can save 25% at the minimum and 209% at the

maximum, which serves as an evidence to the argument that the current address assignment

is not close to optimal, and still retains a good deal of its original “flat" characteristics.

The difference between PBAAA and PBNAAA is trivial, as indicated by those two lines

almost merging into one in Figure 5.4. This is because: the multihoming degree has been
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increasing for both transit ASs and stub ASs with the increase rate for transit ASs much

larger than that for stub ASs [DD11]; and links between transit ASs carry much larger traffic

than those links at the edge of the Internet [ASS03]; and we do not aggregate children’s

prefixes with the prefix in their parent’s prefix set into one new prefix if there exists among

these children some child that is multihomed.

One interesting observation is that “the Current Internet Address Scheme” line keeps

increasing until the year 2007 and then begins to decrease slightly. This is consistent with

the observations in [Hus11] that the granularity of the BGP routing policy continues to

get finer, though at a smaller rate in recent years, while the number of edges between ASs

continue to increase at a linear rate and is consistent with the conclusion in [Hus11] that

no signs of BGP’s dire fate are visible now. In addition, in the face of an IPv4 address

shortage, a number of ISPs aggregated some of their IPv4 prefix advertizements [Hus11], as

we observe “/7" blocks in the BGP routing data in recent years.

5.3 Another Metric: Huston’s CIDR Report

Here we use the provider-based reassignment of prefixes to ASs instead of OPPC prefix

reassignment since if we use OPPC we have to expand the available address space from 232

to 233 in order to meet the address demand of each AS and preserve the routing policies of

each AS no matter what definition of Equivalence Class is used.

For fair comparison we use Definition 3 (least strict) of Equivalence Class, which coincides

with what is used in Huston’s CIDR Report [GH]. That is, aggregation of prefixes may occur

when AS paths used to advertize these prefixes are identical. For prefixes advertized using

the same set of AS paths, CIDR aggregates either numerically consecutive and aggregatable

prefixes or prefixes that are not numerically consecutive and aggregatable but can be made

so by introducing non-routable space in between, which enlarges the actual address demand

of an AS.

However, in our provider-based prefix reassignment, we treat the original prefixes ad-

vertized using the same set of AS paths as one equivalence class and reassign the minimal

number of prefixes that covers the same amount of address space.

The results for the day September 15th, 2012 are shown in Table 5.2. “% gain” is

computed by the difference between the number of prefixes before aggregation and the

number of prefixes after aggregation divided by the number of prefixes before aggregation.

The “CIDR Aggregation" column shows the results given in [GH]. Given the same routing

policy of each AS, our provider-based reassignment saves a larger number of prefixes required
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per AS than the Huston’s method does. This is because we reassigned prefixes from scratch

while Huston only did local prefix aggregation whenever possible. Local prefix aggregation

can only solve the issues, such as the failure-to-aggregate. On the other hand, global prefix

reassignment can also solve issues such as the address fragmentation. Nevertheless, these

results show that the vast majority of the inefficiencies in today’s addressing scheme arise

from provider behavior, and could be easily fixed, without requiring renumbering.

Table 5.2: % Gain of CIDR vs Our Provider-based Reassignment on Sept.05,2012
AS# CIDR Aggregation Our Provider-based Reassign-

ment

AS6389 94.4% 99.94%

AS28573 97.3% 99.89%

AS4766 77.1% 98.34%

AS17974 92.3% 99.53%

AS22773 49.7% 99.39%
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6 | Topology-only Metric

First, we introduce notation necessary for discussing topological matters. Given is a con-

nected labeled undirected graph G = (V,E). Any subset of V is denoted by U . Lower-case

letters u and v (and subscripted variants) range over nodes in V . Each node in V has ≥ 1

labels, and the intersection of any two nodes’ label sets is empty. Labels are assumed (for

now) to be binary strings of varying length, drawn from a set L; the label set of node u is

denoted by lab.u. Lower-case letters g and h (and subscripted variants) range over labels; ǫ

denotes the empty label. Upper-case italic letter L (and subscripted variants) ranges over

sets of labels. If we want to emphasize the node set U that a particular label set L is

associated with, we use the notation L(U).

Abusing notation slightly, let lab.V denote the set of labels used in the graph G: lab.V =

{g | ∃v ∈ V : g ∈ lab.v}. The length of a label g is denoted by len.g.

We denote the common prefix of g and h by g ↓ h, and denote the common prefix of the

label set L by ⇓L: ⇓L = g ↓ (⇓L \ {g}) if |L| > 2; ⇓L = g ↓ h if L = {g, h}; ⇓L = g if

L = {g}.
In this section, we explore the notion of “locality”—the idea that addresses in a network

have some relation to location in the network topology, or put it another way, the idea that

the distance between labels corresponds to the distance between nodes. We aim to come

up with a measurement that would allow us to quantify the efficiency of a given network

instance (i.e., an assignment of addresses to nodes in a graph). This measurement would

also indicate what “optimal” instances should look like, which helps us quantify the degree

to which the current Internet is non-optimal. Though the distance between nodes is clear

enough, the distance between labels is not that obvious. We postpone making concrete the

distance between labels.

It will be useful to first explore some basic cases in order to illustrate our intuition of

locality. Let us consider the most basic nontrivial case: two nodes connected by one edge

and each labeled a binary string. We describe our intuition about “good" and “bad" locality

for this case:
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• At the “bad" locality end of the spectrum, the two labels must be very dissimilar. This

implies the length of at least one of the labels is more than the minimum, according

to our intuition of the distance between labels.

• In the case of “good" locality, the difference between the two labels is minimized: only

1-bit difference is required to distinguish the labels of two nodes. The ideal labeling

has one node labeled “0" and the other labeled “1". Any other labelings introduce

redundancy—bits that are not necessary to distinguish these two nodes.

The general problem is this: given a finite undirected graph G = (V,E), together with

a labeling function L : V → {g | g ∈ Σ∗}, where Σ is an alphabet, we want to compute a

quantity Q(G,L) that in some sense quantifies the “efficiency” of the labeling. The labeling

function should be injective: L(x) = L(y)⇒ x = y for any nodes x and y.

Some high-level requirements on the solution:

• The measurement must be abstract—independent of any particular network system

or routing protocol. It should be informed by the requirements of scalable network

routing, since we know good locality leads to routing scalability.

• For the measurement to be of any practical usage, it should be solvable in polynomial

time (instead of exponential time) for any graph as large as the current Internet.

• The measurement should be consistent with our intuition of locality.

We can think of an optimal network instance as follows: a network instance that re-

quires the minimal number of bits for encoding by a sender, so that the receiving end can

reconstruct the network instance—the graph structure and the label of each node.

We are inspired by Shannon’s derivation of the properties of a quantitative notion of

“choice" or uncertainty, which he called “entropy". Entropy, as we mentioned before, is

defined to measure the amount of “choices" or uncertainty present in a situation where there

are a finite set of individual outcomes in a sample space, each of the outcomes occurs with

a given probability, and the sum of the probabilities of all the outcomes is equal to 1. Two

basic components for Shannon’s entropy are a set of choices and their probabilities. We can

think of entropy as the length (the number of bits) needed to encode an outcome from a

sample space. Shannon found that the minimal average taken over the number of bits to

encode, in a uniquely decodable way, all the outcomes from a sample space is almost the

same as the entropy of a sample space.
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Unfortunately, our problem is more complex. We do not find an analog of an “experi-

ment" and, as a result, we do not have a probability distribution. Instead we have a finite

set of labels and the structure a finite graph.

However Shannon’s third requirement seems helpful to our problem. It was a form of

compositionality; it stated that the total measure should not change when a single choice

is broken into a series of sequential choices without changing the probabilities. Therefore a

number of transformations on graphs, which correspond to the reverse of the breaking down

of choices, conserve the locality of the original network instance.

What transformation could be carried out on an arbitrary graph that would preserve

locality? We consider a transformation in which we “merge” nodes whose labels are in some

sense “close”. Moreover, any transformation we might make on the graph should preserve

uniqueness of labels.

To make this concrete, consider the following merging transformation assuming each node

has only one label for simplicity and assuming the similarity between labels (the inverse

of the distance between labels) is the common prefix of labels. When a node labeled α

contains the label γ, and another node is labeled β, we say there is a misleading match,

because longest-prefix matching stops working as expected as a routing technique. Combine

two neighboring nodes into a single node whose label is their common prefix; all edges

connecting either of these two neighboring nodes to the rest of the graph are attached to the

replacement node. Before this merging transformation can happen, these two neighboring

nodes have to satisfy the following conditions: their labels have a common nonempty prefix

differing from the label of every node in V (G)\{u, v}, and no misleading match is incurred:

6 ∃w : w ∈ V (G) \ {u, v} : lab.u ↓ lab.v � lab.w � lab.u ∨ lab.u ↓ lab.v � lab.w � lab.u.

This above transformation preserves uniqueness. It also, in a sense, captures what we

mean by locality: the ability to represent a subgraph by a single node. If we iterate the

process of the above combining, it results, ultimately, in one of three cases:

• A single node, with a nonempty label. In this case the labeling in some sense correlates

with graph topology, but contains redundancy.

• A pair of adjacent nodes with no common prefix. In the best case, one node is labeled

0 and the other is 1. Any other case represents a less than optimal labeling.

• A line or star or loop of nodes (or a set of interconnected loops and lines and stars),

such that adjacent nodes share no common prefix.

The last case represents a non-optimal labeling; the larger the graph of this shape, the
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worse the locality. We therefore want to define Q(G,L) in terms of the size of the graph

remaining when the process terminates, assuming that each node has only one label.

6.1 Greedy Contraction Process

The process mentioned previously is nondeterministic. That is: at any step, there may

be more than one set of nodes, with distinct common prefixes, and depending on which

set is combined, the final graph may be different. We are trying to solve the problem of

deciding “Is there a sequence of choices that results in a final configuration having the number

of labels/the number of bits on the graph when the process terminates at most k?”, by

introducing some greedy heuristics to make our hierarchical clustering tractable. Moreover,

it requires only a minimal level of “nearness” in labels, such as a nonempty common prefix.

For example, nodes with labels 0110101001 and 0010100000 could be merged, even though

their common prefix is only 10% of their total length.

6.1.1 Heuristics

For simplicity of discussion we assume each node has only one label.1 For each node u,

N(u) denotes the set of u’s neighbors; For each set of nodes U , G[U ] denotes the subgraph

induced by U : V (G[U ]) = V (U), and e = (u, v) ∈ E(G[U ]) if and only if u ∈ U , v ∈ U ,

and (u, v) ∈ E(G). Suppose, for a label denoted by cp, there exist more than one maximal

node set denoted by U1, U2, ..., Um: ⇓L(U1)) = ⇓L(U2) = ... = ⇓L(Um) = cp; each of

G[U1], G[U2], ..., G[Um] forms a connected subgraph of the graph G; ∀u, v : u ∈ Ui ∧ v ∈
N(u) \ Ui : cp ↓ lab.v ≺ cp. We will call each of them a cluster with the common prefix

equal to cp. At most one of them can be merged into a new node and labeled with cp,

without violating the uniqueness of each label in the updated graph. We apply the following

heuristics, so as to make our metric as precise as possible:

• We say a cluster is valid for merging if no misleading match is incurred: for any node

u not in the node set of a given cluster, if u’s label is the extension of cp, then it is

not a prefix of any label of any node in the cluster.

• In addition to considering how much structural similarity is shared by labels in L(U),

we also consider how much structural dissimilarity exists among these labels. The

larger the difference among these labels, the more redundancy contained: more bits

than necessary is used to distinguish the nodes in U . If there is still more than one Ui

1In this case we use lab.v and the label in lab.v interchangeably for the following discussion.
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left after all the invalid clusters have been removed, we use another metric which we

call difference of the label set of a node set and define it to be:

diff(U) =
∑

u∈U

len.(lab.u)− |U | × len.cp

We choose the cluster(s) with the minimal diff(Ui).

• When we merge one Ui, other Ujs (i 6= j) cannot subsequently be merged without

violating the uniqueness of labels. At later steps, any u ∈ Uj (i 6= j) cannot be

merged with any v ∈ N(u) without violating the validity condition, unless this v

is (in)directly contracted from the node set containing Ui. Therefore N(Uj) gives a

rough estimation about how many future mergings can happen if Uj is merged. Let’s

illustrate this with a concrete example: Figure 6.1 shows the initial labeled graph:

001

0010100

1

000 00100

0010101
0010110

001011111

u1

u2

u3

u4 u5

u6

u7

Figure 6.1: Initial labeled graph
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001011111
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u4 u5

u6

u7

u8

Figure 6.2: Contraction process: step 1,2

– at step 1 both {u2, u3} and {u6, u7} are valid for merging, but we choose {u2, u3}
because diff({u2, u3}) < diff({u6, u7});

– at step 2, {u5, u6, u7} is not valid for merging—misleading matches would be

incurred if we were to merge {u5, u6, u7}. The result after step 1 and step 2 is

shown in Figure 6.2;

– at step 3, {u1, u8} is valid for merging into node u9;
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Figure 6.3: Contraction process: step 3,4

– at step 4, {u4, u5, u6, u7} is not valid for merging—misleading matches would be

incurred if we were to merge {u4, u5, u6, u7}. The result after step 3, 4 is shown

in Figure 6.3.

We argue that, after we have processed clusters Uis at step len.(⇓L(Ui)) (either merge

or not) and got an intermediate labeled graph, there is no need to recheck any clus-

ters Ujs with len.(⇓L(Uj)) > len.(⇓L(Ui)) in this intermediate graph. Refer to Sec-

tion 6.1.2.

Based on the above observations, we define mrgablesWithin1Hop(Ui) as

mrgablesWithin1Hop(Ui) = |{v | v ∈ N(Ui) \ Ui ∧ lab.v ↓ (⇓L(Ui)) 6= ǫ}|

If there are still more than one Ui left, we choose the cluster(s) with the maximal

mrgablesWithin1Hop(Ui).

• If there are still more than one Ui left, we sort labels in each Ui according to the lexico-

graphical order, concatenate them, and pick the cluster with the smallest concatenated

label according to the lexicographical order.

When each node has more than one label, the definition of cluster has to be gen-

eralized. A cluster associated with the common prefix cp is now a node-label pair set,

with nodeSet(cluster) = ∪
〈u,g〉∈cluster

u and lblSet(cluster) = ∪
〈u,g〉∈cluster

g: G[nodeSet(cluster)]

forming a connected subgraph; ⇓lblSet(cluster) = cp; ∀u, v : u ∈ nodeSet(cluster) ∧ v ∈
N(u) \ nodeSet(cluster) : (∀g : g ∈ lab.v : cp ↓ g ≺ cp); ∀u : u ∈ nodeSet(cluster) : (∀g : g ∈
lab.u \ lblSet(cluster) : cp ↓ g ≺ cp).

The above process is called contraction process. A step of the contraction process cor-

responds to a distinct structural similarity, for example, a distinct common prefix length

l—where l lies between 1 and the largest length of the common prefix between any two
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labels either belonging to one node or belonging to two adjacent nodes. We start from the

maximum of l, decrease 1 at a time, and terminate when l = 0.

6.1.2 Proof of Stability of Non-mergeability

For simplicity of proof, we assume each node has only one label. Let’s first explain more

notations that we are going to use. For each node u, we introduce a new set of strings

(labels), denoted by u.contained; we abuse terminology slightly, and say “u contains α” if

α ∈ u.contained. Initially u.contained = {lab.u} for each node u. The following expression:

α � β � γ

is shorthand for α � β ∧ β � γ.

We only perform the following kind of transformations on the graph: each transformation

merges two neighboring nodes into a single node, and removes the edge between them from

the graph; if two neighbors u and v (we denote this situation by u-v) are merged, we denote

the resulting merged node by 〈uv〉, to indicate that the graph structure apart from the edge

u-v is unchanged; in particular, other edges terminating on u or v are moved to 〈uv〉.
More specifically, the above transformation—merging two neighboring nodes u and v—

consists of the following steps:

• adding a new node denoted by 〈uv〉 with lab.〈uv〉 = lab.u ↓ lab.v and 〈uv〉.contained =

u.contained ∪ v.contained;

• adding edges between 〈uv〉 and each of the neighbors of u and v that is not v or u;

• removing edges terminating on u;

• removing edges terminating on v.

There are three invariants that the above transformation must obey in order to preserve

locality:

I0 ∀α ∈ u.contained→ lab.u � α. (A node’s label is a prefix of every label it contains.)

I1 ∃α : α ∈ u.contained : lab.u � α. A node contains at least one label that matches its

label.

I2 lab.x � lab.y � α→ x = y ∨ α 6∈ x.contained. This is the locality property ; it states that

there are no misleading matches in the graph.
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First we show that Invariant I1 is guaranteed to be satisfied. Since, for each node u, we

initialize u.contained to be {lab.u}, we can see that Invariant I1 is guaranteed to be satisfied.

Next we show that Invariant I0 is also guaranteed to be satisfied. Initially u.contained =

{lab.u} for each node u. Thus Invariant I0 holds. Assume, after performing the above

transformation k − 1 times, Invariant I0 holds. We perform the above transformation the

kth time—say merging two neighboring nodes u and v into the new node 〈uv〉—and have

the following:

0 lab.〈uv〉 � lab.u Hypothesis
1 lab.〈uv〉 � lab.v Hypothesis
2 〈uv〉.contained = u.contained∪v.contained Hypothesis
3 ∀α ∈ u.contained→ lab.u � α Hypothesis
4 ∀β ∈ v.contained→ lab.v � β Hypothesis
5 ∀α ∈ 〈uv〉.contained→ lab.〈uv〉 � α 1, 2, 3, 4, 5

By using mathematical induction, we show that Invariant I0 holds no matter how many the

above transformations are performed.

Contrary to Invariant I0 and Invariant I1, Invariant I2 does not always hold, and special

care must be taken to ensure the locality property is satisfied after the above transforma-

tion is performed. There are two ways to violate Invariant I2, when we try to merge two

neighboring nodes u and v.

The first way to violate Invariant I2—which we call “Type 1" violation—occurs when

there exists a third node w 6= u, v and a label α ∈ u.contained ∪ v.contained, such that

lab.u ↓ lab.v � lab.w � α. We call such w and α the witnesses to “Type 1" violation.

The second way to violate Invariant I2—which we call “Type 2" violation—occurs when

there exists a third node x 6= u, v and a label β ∈ x.contained with lab.u 6� β and lab.v 6� β,

such that lab.x � lab.u↓ lab.v � β. We call such x and β the witnesses to “Type 2" violation.

We say an edge is mergeable if the above merging transformation does not violate any

invariant; we say an edge is unmergeable otherwise.

Theorem 6.1.1. (stability of non-mergeability) An edge that is unmergeable does not become

mergeable as a result of the merging of some other edge.

Proof. We first consider two neighboring nodes u and v cannot be merged due to “Type

1" violation. Then we know that there exists a third node w 6= u, v and a label α ∈
u.contained ∪ v.contained, such that lab.u ↓ lab.v � lab.w � α. If there exists another node

x 6= u, v, w that is adjacent to w and satisfies lab.w ↓ lab.x ≺ lab.u↓ lab.v, then, after merging
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w and x (assuming no violations are incurred by this merging), lab.w is replace with lab.〈wx〉
and lab.u ↓ lab.v � lab.〈wx〉 � α does not hold any more. However we show that by doing

so, a “Type 2" violation is incurred.

0 ∃σ : σ ∈ w.contained : lab.w � σ I1
1 lab.w ↓ lab.x ≺ lab.u ↓ lab.v Hypothesis
2 lab.u ↓ lab.v � lab.w Hypothesis
3 lab.u ↓ lab.v � σ 0, 2 Transitivity of �
4 lab.w ↓ lab.x ≺ lab.u ↓ lab.v � σ 1, 3

Thus, after merging w-x, merging u-v is still unmergeable.

We move on to consider two neighboring nodes u and v cannot be merged due to “Type 2"

violation. Then we know that there exists a third node x 6= u, v and a label β ∈ x.contained

with lab.u 6� β and lab.v 6� β, such that lab.x � lab.u↓ lab.v � β. If there exists another node

y 6= u, v, x that is adjacent u (or v) and satisfies lab.u↓ lab.y ≺ lab.x (or lab.v ↓ lab.y ≺ lab.x),

then, after merging u and y (or merging v and y), lab.u is replace with lab.〈uy〉 (or lab.v is

replace with lab.〈vy〉 ) and lab.x � lab.〈uy〉 ↓ lab.v � β (or lab.x � lab.u ↓ lab.〈vy〉 � β) does

not hold any more. However we show that by doing so, a “Type 1" violation is incurred.

For simplicity of discussions, we assume y is adjacent to u.

0 lab.u 6� β Hypothesis
1 lab.v 6� β Hypothesis
2 lab.x � lab.u ↓ lab.v � β Hypothesis
3 ∃δ : δ ∈ u.contained : lab.u � δ I1
4 lab.u ↓ lab.y � δ lab.u ↓ lab.y � lab.u, 3, Transitivity
5 lab.x � δ 2, 4, Transitivity
6 lab.〈uy〉 ↓ lab.v ≺ lab.x � δ δ ∈ 〈uy〉.contained, Hypothesis, 5

Thus, after merging u-y, merging u-v is still unmergeable.

Before we end this section, we show that the item I1 and item I2 together imply the

uniqueness of labels. To see this, suppose x 6= y and lab.x = lab.y. By I1, ∃α : α ∈
x.contained : lab.x � α. Since lab.x = lab.y, we have lab.y � α. Combined above, lab.x =

lab.y � α, which violates I2. Thus preservation of the invariants implies each node’s label

is unique.
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6.1.3 Justification of Our Choice of Valid Candidate Clusters

Suppose cp is the common prefix of all the labels belonging to a given cluster. By removing

the assumption that each node has only one label, we generalize the concept of a valid cluster

as: if, for any node u with none of u’s labels belonging to a given cluster, each of u’s labels

does not simultaneously satisfy (1) it is the extension of cp; and (2) it is the prefix of some

label belonging to the cluster. To be specific a cluster is valid if ∀u : u ∈ V (G) ∧ (∀〈v, g〉 :
〈v, g〉 ∈ cluster : u 6= v) : (∀h : h ∈ lab.u : (∄〈v, g〉 : 〈v, g〉 ∈ cluster : cp � h � g)) 2. Or put

it another way, a valid cluster is a cluster that, after being merged into one node, does not

incur any misleading match or does not violate Invariant I2.

Let’s illustrate it with a concrete example. In Figure 6.4, a straight line represents an

edge in a graph, while a curved line means there may be more than one node in between

the endpoints of the curve. Suppose we have found a candidate cluster consisting of u and v

lab.u = 00101 lab.v = 001000

w

Figure 6.4: Example for Justification of Our Choice of Valid Candidate Clusters

that can be labeled with 0010. Suppose there exists a node w 6= u, v with lab.w = {00100}.
If we were to merge u and v into a new node u′ with its label 0010, we would conclude that

all the labels that are extensions of 00100 are clustered around w and all the labels that are

extensions of 0010 but not extensions of 00100 are clustered around u′. Locality, however, is

distorted because of the existence of lab.v = {001000}. Therefore we say that this candidate

cluster consisting of u and v is not valid for merging.

Suppose there exists a node w 6= u, v with lab.w = {00111}. If we were to merge u

and v into a new node u′ with its label 0010, we would conclude that all the labels that

are extensions of 00111 are clustered around w and all the labels that are extensions of

0010 are clustered around u′. We see that locality is preserved after this merging. We still

need to check each node in V \ {u, v, w} before we can safely say that this candidate cluster

consisting of u and v is valid for merging.

2For any node u with some of u’s labels belonging to a given cluster, the remaining labels of u cannot
satisfy the these two conditions; otherwise they would be included in the cluster.
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6.1.4 Algorithm for Our Contraction Process

Given a common prefix, we list the algorithms to compute a cluster by using the above

heuristics. Here we assume there is ≥ 1 label per node. getNumOfLbls(U) denotes a function

to get the number of the labels of the nodes in U , assuming there are no redundant labels

in L(U). getSumOfLensOfLbls(U) denotes a function to get the sum of the lengths of the

labels of the nodes in U , assuming there are no redundant labels in L(U).

Algorithm 7 getMaxCpLenOfAdjNodes(G): get the maximum among the lengths of the
common prefixes of labels within one node or from adjacent nodes in G

Input: G = (V,E)
Output: the maximal length of the common prefixes of labels within one node or of adjacent

nodes in G
1: maxCpLenOfAdjNodes = 0
2: for u ∈ V (G) do

3: for g ∈ lab.u do

4: for h ∈ lab.u \ {g} do

5: if len.(g ↓ h) > maxCpLenOfAdjNodes then

6: maxCpLenOfAdjNodes = len.(g ↓ h)
7: end if

8: end for

9: end for

10: end for

11: for e = (u, v) ∈ E(G) do

12: for g ∈ lab.u do

13: for h ∈ lab.v do

14: if len.(g ↓ h) > maxCpLenOfAdjNodes then

15: maxCpLenOfAdjNodes = len.(g ↓ h)
16: end if

17: end for

18: end for

19: end for

20: return maxCpLenOfAdjNodes
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Algorithm 8 getCpsOfAdjNodesOfGivenLen(G, l): get all the common prefixes of labels
within one node or from adjacent nodes in G of the specified length l

Input: G = (V,E), the label length l
Output: the set of the common prefixes of labels within one node or of adjacent nodes in

G of the specified length l
1: initialize the set cpsOfAdjNodesOfLen = {}
2: for u ∈ V (G) do

3: for g ∈ lab.u do

4: for h ∈ lab.u \ {g} do

5: if len.(g ↓ h) = l then

6: cpsOfAdjNodesOfLen ← g ↓ h
7: end if

8: end for

9: end for

10: end for

11: for e = (u, v) ∈ E(G) do

12: for g ∈ lab.u do

13: for h ∈ lab.v do

14: if len.(g ↓ h) = l then

15: cpsOfAdjNodesOfLen ← g ↓ h
16: end if

17: end for

18: end for

19: end for

20: return cpsOfAdjNodesOfLen
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Algorithm 9 getMaxClstr(u, g, candCp, procedVtxs, G): get a cluster cluster— its nodes
forms a connected subgraph; the common prefix of its labels is equal to candCp; ∀u, v : u ∈
nodeSet(cluster) ∧ v ∈ N(u) \ nodeSet(cluster) : (∀g : g ∈ lab.v : cp ↓ g ≺ cp); ∀u : u ∈
nodeSet(cluster) : (∀g : g ∈ lab.u \ lblSet(cluster) : cp ↓ g ≺ cp).
Input: node u, its label g starting with candCp, the node set procedVtxs each of which has

been searched for labels starting with candCp and G = (V,E) for finding neighbors
Output: the maximal set of node-label pairs with its nodes forming a connected subgraph

and with the common prefix of its labels equal to candCp
1: cluster← 〈u, g〉, q ← 〈u, g〉
2: while q.isEmpty() =false do

3: p = q.removeFirst()
4: v = p.getFirst()
5: h = p.getSecond()
6: if u = v and g = h then

7: for h ∈ lab.u do

8: if h = g then

9: continue
10: else if h.startWith(candCp) = then

11: cluster← 〈u, h〉, q ← 〈u, h〉
12: end if

13: end for

14: procedVtxs ← u
15: end if

16: for w ∈ N(v) do

17: if procedVtxs.contains(w) =false then

18: for h ∈ lab.w do

19: if h.startWith(candCp) =true then

20: cluster← 〈w, h〉, q ← 〈w, h〉
21: end if

22: end for

23: procedVtxs ← w
24: end if

25: end for

26: end while

27: lblSetOfClstr = {}
28: for 〈v, g〉 ∈ cluster do

29: lblSetOfClstr← g
30: end for

31: if |lblSetOfClstr| == 1 then

32: return null
33: end if

34: return cluster
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Algorithm 10 isValidClstr(cluster, candCp, U): we say the cluster is valid for merging if it
satisfies ∀u : u ∈ U ∧ (∀〈v, g〉 : 〈v, g〉 ∈ cluster : u 6= v) : (∀h : h ∈ lab.u : (∄〈v, g〉 : 〈v, g〉 ∈
cluster : candCp � h � g))

Input: the candidate cluster cluster, the label candCp and the node set U
Output: return true if the cluster is valid for merging; return false otherwise.
1: nodeSetOfClstr = ∅
2: for 〈u, g〉 ∈ cluster do

3: nodeSetOfClstr← u
4: end for

5: for v ∈ U \ nodeSetOfClstr do

6: for h ∈ lab.v do

7: if h = candCp then

8: return false
9: else if h.startWith(candCp) then

10: for 〈w, g〉 ∈ cluster do

11: if g.startWith(h) then

12: return false
13: end if

14: end for

15: end if

16: end for

17: end for

18: return true
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Algorithm 11 findClstrOfMinBits(candClstrs, candCp): find the cluster among candClstrs
with the minimal sum of lengths of labels of it
Input: the set of clusters candClstrs and the common prefix of each cluster candCp
Output: find the cluster among candClstrs with the minimal sum of lengths of labels of it
1: minLenSumOfClstr = 0
2: for cluster ∈ candClstrs do

3: lblSetOfClstr = ∅
4: for 〈u, g〉 ∈ cluster do

5: lblSetOfClstr← g
6: end for

7: lenSumOfClstr = 0
8: for g ∈ lblSetOfClstr do

9: lenSumOfClstr = lenSumOfClstr + len.g
10: end for

11: if lenSumOfClstr < minLenSumOfClstr then

12: minLenSumOfClstr = lenSumOfClstr
13: end if

14: end for

15: clstrsOfMinLenSum = ∅
16: for cluster ∈ candClstrs do

17: lblSetOfClstr = ∅
18: for 〈u, g〉 ∈ cluster do

19: lblSetOfClstr← g
20: end for

21: lenSumOfClstr = 0
22: for g ∈ lblSetOfClstr do

23: lenSumOfClstr = lenSumOfClstr + len.g
24: end for

25: if lenSumOfClstr == minLenSumOfClstr then

26: clstrsOfMinLenSum← cluster
27: end if

28: end for

29: return clstrsOfMinLenSum
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Algorithm 12 findMaxNumOfMatchedLbls(candClstrs, G): find the maximal number of
distinct labels; these labels share nonempty common prefix with a cluster’s label set, and
belong to the label sets of the nodes, either adjacent to or is equal to, some node in the
cluster’s node set.
Input: a set of clusters candClstrs and input graph G
Output: the maximal number of labels sharing nonempty common prefix with some clus-

ter’s label set and those labels not belonging to the cluster’s label set but belonging to
the nodes either adjacent to or within the cluster’s node set

1: maxNumOfMatchedLbls = 0
2: for cluster ∈ candClstrs do

3: nodeSetOfClstr = ∅, lblSetOfClstr = ∅,
4: locProcedVtxs = ∅, matchedLblSet = ∅
5: for 〈v, g〉 ∈ cluster do

6: nodeSetOfClstr← v, lblSetOfClstr← g
7: end for

8: for v ∈ nodeSetOfClstr do

9: for w ∈ N(v) ∪ {v} do

10: if locProcedVtxs.contains(w) then

11: continue
12: end if

13: for g ∈ lab.w do

14: if nodeSetOfClstr.contains(w) ∧ lblSetOfClstr.contains(g) then

15: continue
16: else

17: if matchedLblSet.contains(g) then

18: continue
19: end if

20: pick h in lblSetOfClstr
21: if len.(g ↓ h) > 0 then

22: matchedLblSet← g
23: end if

24: end if

25: end for

26: end for

27: end for

28: if maxNumOfMatchedLbls < |matchedLblSet| then

29: maxNumOfMatchedLbls = |matchedLblSet|
30: end if

31: end for

32: return maxNumOfMatchedLbls
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Algorithm 13 findClstrsOfMaxMatchedLbls(candClstrs, G): find the set of clusters— each
of which has the maximal number of labels; these labels share nonempty common prefix
with a cluster’s label set, and belong to the label sets of the nodes, either adjacent to or is
equal to, some node in the cluster’s node set.
Input: a set of clusters candClstrs and input graph G
Output: find the set of clusters, each of which has the maximal number of labels sharing

nonempty common prefix with its label set and those labels not belonging to its label
set but belonging to the nodes either adjacent to or within its node set

1: maxNumOfMatchedLbls = findMaxNumOfMatchedLbls(candClstrs, G)
2: for cluster ∈ candClstrs do

3: nodeSetOfClstr = ∅, lblSetOfClstr = ∅,
4: locProcedVtxs = ∅, matchedLblSet = ∅
5: for 〈v, g〉 ∈ cluster do

6: nodeSetOfClstr← v, lblSetOfClstr← g
7: end for

8: for v ∈ nodeSetOfClstr do

9: for w ∈ N(v) ∪ {v} do

10: if locProcedVtxs.contains(w) then

11: continue
12: end if

13: for g ∈ lab.w do

14: if nodeSetOfClstr.contains(w) ∧ lblSetOfClstr.contains(g) then

15: continue
16: else

17: if matchedLblSet.contains(g) then

18: continue
19: end if

20: pick h in lblSetOfClstr
21: if len.(g ↓ h) > 0 then

22: matchedLblSet← g
23: end if

24: end if

25: end for

26: end for

27: end for

28: if maxNumOfMatchedLbls == |matchedLblSet| then

29: clstrsOfMaxMatchedLbls ← cluster
30: end if

31: end for

32: return clstrsOfMaxMatchedLbls
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Algorithm 14 getClstrOfSmallestConcatLbl(candClstrs): first sort labels in each cluster
and concatenate them. Then we sort these concatenated labels and return the cluster
corresponding to the first concatenated label.
Input: a set of clusters candClstrs
Output: first sort labels in each cluster and concatenate them. Then we sort these con-

catenated labels and return the cluster corresponding to the first concatenated label
1: clstrConcatLblToClstrIdx = ∅, concatLblOfClstrs = ∅
2: for i = 0 to |candClstrs| − 1 do

3: cluster = candClstrs[i]
4: lblSetOfClstr = ∅
5: for 〈v, g〉 ∈ cluster do

6: lblSetOfClstr← g
7: end for

8: sort labels in lblSetOfClstr ascendingly
9: concatenate the sorted labels one by one into concatLbl

10: concatLblOfClstrs← concatLbl
11: clstrConcatLblToClstrIdx← 〈concatLbl, i〉
12: end for

13: sort labels in concatLblOfClstrs
14: j = clstrConcatLblToClstrIdx.get(concatLblOfClstrs[0])
15: return candClstrs[j]

76



www.manaraa.com

Algorithm 15 findFinalClstrsOfCps(candCpSet, G): for each candCp in candCpSet, find
one maximal set of node-label pairs satisfying (1) its nodes form a connected subgraph; (2)
the common prefix of its labels is equal to candCp; (3) it is valid; (4) the sum of the lengths
of its labels is minimal; (5) it has the maximal number of labels sharing nonempty common
prefix with some cluster’s label set and belonging to the nodes either adjacent to or is equal
to some node in the cluster’s node set; (6) it has the smallest concatenated label. Each
candCp in candCpSet is distinct and of the same length.
Input: the set of labels candCpSet and G = (V,E)
Output: the set of the maximal sets of node-label pairs each of which satisfies that (1) its

nodes form a connected subgraph; (2) the common prefix of its labels is equal to candCp;
(3) it is valid; (4) the sum of the lengths of its labels is minimal; (5) it has the maximal
number of labels sharing nonempty common prefix with some cluster’s label set and
belonging to the nodes either adjacent to or is equal to some node in the cluster’s node
set; (6) it has the smallest concatenated label.

1: for candCp ∈ candCpSet do

2: candClstrs = {}, procedVtxs = {}
3: for u ∈ V (G) do

4: if procedVtxs.contains(u) then

5: continue
6: end if

7: for g ∈ lab.u do

8: if g.startWith(candCp) then

9: cluster = getMaxClstr(u, g, candCp, procedVtxs, G)
10: if |cluster| > 1 then

11: valid = isValidClstr(cluster, candCp, V (G))
12: if valid then

13: candClstrs← cluster
14: end if

15: end if

16: break
17: end if

18: end for

19: end for

20: tmpClstrs = findClstrOfMinBits(candClstrs, candCp)
21: if |tmpClstrs| > 1 then

22: oldTmpClstrs = tmpClstrs
23: tmpClstrs = findClstrsOfMaxMatchedLbls(candClstrs, candCp)
24: if |tmpClstrs| == 0 then

25: tmpClstrs = oldTmpClstrs
26: end if

27: end if

28: finalClstrs← getClstrOfSmallestConcatLbl(tmpClstrs)
29: end for

30: return finalClstrs
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6.2 Using Last k Steps of Contraction Process

Our first metric to capture the hierarchical clustering we have built using the above heuristics

is to use the last k steps of our contraction process, or put it another way, the top k levels

of our clustering structure.

6.2.1 Justification of Using History Information

In this subsection, we try to argue that purely using the number of labels and the number

of bits at the end of the contraction process is not sufficient to measure locality; introducing

some history information related to the contraction process (i.e. the number of labels and

the number of bits at each of the last k steps of the contraction process where k > 1) make

our metric more accurate in capturing locality.

We will give one example to support the above argument. Consider two connected

networks A and B, each of which has n hosts. Network A is assigned a class C IPv4 address

block 64.1.1.0/24, and network B is assigned a class C IPv4 address block 128.2.2.0/24. We

can see that the address space covered by 64.1.1.0/24 is disjoint from the address space

covered by 128.2.2.0/24. In the first labeling scheme, no subnetting is used in network A

nor in network B; IPv4 addresses from 64.1.1.0/24 are assigned randomly to each host in

network A; IPv4 addresses from 128.2.2.0/24 are assigned randomly to each host in network

B. In the second labeling scheme, hosts are grouped into 4 subnets in network A; hosts are

grouped into 4 subnets in network B; each subnet in network A is assigned a distinct split

prefix from 64.1.1.0/24; each subnet in network B is assigned a distinct split prefix from

128.2.2.0/24; hosts in each subnet obtain IPv4 addresses from the subnet’s prefix.

To measure the locality of these two address schemes using our abstract metric, a hi-

erarchical clustering structure is built using Algorithm 15 for each of the two labelings.

The hierarchical clustering structure for the labeling with no subnetting is shown in Fig-

ure 6.5(a), and the hierarchical clustering structure for the labeling with subnetting is shown

in Figure 6.5(b).

As mentioned in Section 3.6, the introduction of subnetting has greatly reduced the

routing state kept at each host. However if we were to use the number of labels and the

number of bits at the end of our contraction process, we would make a wrong conclusion

that these two address schemes have the same locality. Only by introducing some history

information, can our metric give the correct measurement of the locality of these two different

address schemes: if the number of labels and the number of bits at the last two steps of our

contraction process is used instead, we make the correct conclusion that the address scheme

78



www.manaraa.com

64.1.1.0/24 128.2.2.0/24

64.1.1.1 64.1.1.n 128.2.2.1 128.2.2.n

(a) no subnetting is used

64.1.1.0/24 128.2.2.0/24

64.1.1.0/26

64.1.1.192/26 128.2.2.0/26

128.2.2.192/26

64.1.1.1 64.1.1.193 128.2.2.1 128.2.2.193

(b) subnetting is used

Figure 6.5: Hierarchical clustering structure built using Algorithm 15 for each of the labelings

for network B is better than that for network A.

6.2.2 Normalization across Graphs of Different Sizes

The minimal number of labels left at each step of our contraction process is 2 (with one

label starting with 0 and with the other label starting with 13), and the maximal num-

ber of labels left at each step is
∑

u∈V (G) |lab.u|; the minimal number of bits left at each

step of our contraction process is 2, and the maximal number of bits left at each step is
∑

u∈V (G)

∑

g∈lab.u len.g. Given two distinct labeled graphs, the minimal number of label-

s/bits at each step of our contraction is the same, while the maximal number of labels/bits

at each step of our contraction is not. The main idea of our normalization method is to

find a bijective mapping f such that, given two distinct integer ranges [l1, r1] and [l2, r2],

f(l1) = l2 and f(r1) = r2.

Let numOfLbl(G, 1, k) denote the sum of the number of labels left from the last step to

the kth step from the end; let numOfBits(G, 1, k) denote the sum of the number of bits left

from the last step to the kth step from the end. In particular, numOfLbl(G, i, i) denotes

the number of labels left at the ith step from the end, and numOfBits(G, i, i) denotes the

number of bits left at the ith step from the end. Our normalization formulas are shown in

Equation 6.1.

To explain Equation 6.1 works, consider two distinct labeled graphs—say G and G′. We

can either normalize numOfLbl(G, 1, k) according to Equation 6.1, or normalize numOfLbl(G′, 1, k)

after we exchange G and G′ in Equation 6.1. Suppose we normalize numOfLbl(G, 1, k), and,

after that, we simply compare it with numOfLbl(G′, 1, k): the smaller the better the locality.

If they are equal, we move on to either normalize numOfBits(G, 1, k) according to Equa-

tion 6.2, or normalize numOfBits(G′, 1, k) after we exchange G and G′ in Equation 6.2.

Suppose we normalize numOfBits(G, 1, k), and, after that, we simply compare it with

3If all the labels in L(V (G)) share some nonempty prefix, we remove this prefix from each label as a
preprocessing step.
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numOfLbl(G, 1, k) =
∑

1≤i≤k

((numOfLbl(G, i, i) − 2)×
|∑u∈V (G′) |lab.u| − 2|
|∑u∈V (G) |lab.u| − 2| + 2)

≈
∑

1≤i≤k

numOfLbl(G, i, i) ×
|∑u∈V (G′) |lab.u||
|∑u∈V (G) |lab.u||

(6.1)

numOfBits(G, 1, k) =
∑

1≤i≤k

((numOfBits(G, i, i) − 2)×
|∑u∈V (G′)

∑

g∈lab.u |len.g| − 2|
|∑u∈V (G)

∑

g∈lab.u |len.g| − 2| + 2)

≈
∑

1≤i≤k

numOfBits(G, i, i) ×
|∑u∈V (G′)

∑

g∈lab.u |len.g||
|∑u∈V (G)

∑

g∈lab.u |len.g||
(6.2)

numOfBits(G′, 1, k): the smaller the less the redundancy.

If they are equal, we conclude the two labelings have the same locality. How precise this

conclusion is depends, to some extent, on how many history information we uses.

6.2.3 Algorithm

Since not all labels of a node belongs to the same cluster for a given cp we cannot simply

merge nodeSet(cluster) into a new node and label it with cp. Instead, as shown in Line 23 of

Algorithm 16, we replace the label g of the node u with the label cp, and add this new label to

the label set of u. Special care, however, must be taken when calculating sumOfLensOfLbls

and numOfLbls, to make sure that we do not count each distinct label more than once.

80



www.manaraa.com

Algorithm 16 Using Last k Steps of Contraction Process as one abstract locality metric
Input: a labeled AS-level graph G = (V,E)
Output: # of labels and # of bits for each step
1: maxCpLenOfAdjNodes = getMaxCpLenOfAdjNodes(G)
2: sumOfLensOfLbls = getSumOfLensOfLbls(V (G))
3: numOfLbls = getNumOfLbls(V (G))
4: while maxCpLenOfAdjNodes > 0 do

5: cpsSet =
6: getCpsOfAdjNodesOfGivenLen(G,maxCpLenOfAdjNodes)
7: if cpsSet 6= ∅ then

8: finalClstrs = findFinalClstrsOfCps(cpsSet, G)
9: for i = 0 to |cpsSet| − 1 do

10: cluster = finalClstrs.get(i)
11: if cluster =null then

12: continue
13: end if

14: candCp = cpsSet.get(i)
15: lblSetOfClstr = ∅
16: for 〈u, g〉 ∈ cluster do

17: lblSetOfClstr← g
18: end for

19: sumOfLensOfLbls = sumOfLensOfLbls− ∑

g∈lblSetOfClstr

len.g

20: sumOfLensOfLbls = sumOfLensOfLbls + len.candCp
21: numOfLbls = numOfLbls + |lblSetOfClstr| − 1
22: for 〈u, g〉 ∈ cluster do

23: lab.u = (lab.u \ {g}) ∪ {candCp} (instead of merging)
24: end for

25: end for

26: end if

27: print maxCpLenOfAdjNodes, sumOfLensOfLbls and numOfLbls
28: maxCpLenOfAdjNodes −−
29: end while
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7 | Results for Abstract Locality Metric

The input AS-level graphs used in this section is the same as those used for the BGP-based

locality metric. The basic statistic information in terms of the number of nodes (ASs) and

the number of edges (eBGP sessions) of our input AS-level graph for each year is the same

as shown in Figure 5.1. Here structural similarity between two labels is measured by the

length of the common prefix between two labels.

7.1 Validation of the Metric

In this section, we validate the effectiveness of this metric by applying it to a series of

locality-decreasing address schemes given an input AS-level graph.

The general idea for creating our locality-decreasing (in high probability) address schemes

is as follows. Since the metric is independent of any forwarding/routing mechanism, only one

label is assigned to each node in an input AS-level graph. In addition, we put no limit upon

the length of a label and labels can be of variable lengths. We still assign to either a single-

homed or a multihomed site a label out of a service provider’s address space. By assigning

a site in this way, topologically closer nodes have structurally more similar addresses (in

high probability). We then create other addressing schemes by randomly picking a subset

of nodes U of different sizes and randomly reassigning L(U) to each node in U , thus making

address assignments partially or completely not service-provider oriented. We expect our

locality metric to be smaller if we assign each (single-homed or multihomed) customer’s

address to be the extension of its direct primary provider’s address than after we randomly

switch the addresses of some subset of nodes.

We will now discuss the details for constructing these locality-decreasing (in high prob-

ability) address schemes. We first create the addressing scheme with each (single-homed or

multihomed) customer’s address to be the extension of its direct primary provider’s address

as follows: Suppose the input AS-level graph is connected. If not, we simply use the largest

connected component as the input graph instead. Given the input AS-level graph:

• We find the clique (or the core), achieved by using the method proposed in [SARK02b].
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• For each node contained in the clique we build a tree rooted at that node. For each

customer-provider link the customer AS is the child node and the provider AS is the

parent node. If an AS is multihomed to more than one provider, we pick the provider

with the largest degree as mentioned before.

• For each node contained in the node set of the clique denoted by clq, we assign a

distinct label from the set { 0...0
︸︷︷︸

⌈log2 |V (clq)|⌉

, ..., 1...1
︸︷︷︸

⌈log2 |V (clq)|⌉

}.

• For each tree we assign labels from top down. Suppose the current node u is as-

signed γ. If it does not have a child we do nothing; if it has x ≥ 1 children, we

first change its label to γ1 and then assign to each child a distinct label from the set

{γ0 0...0
︸︷︷︸

⌈log2 x⌉

, ..., γ0 1...1
︸︷︷︸

⌈log2 x⌉

}.

In this way we divide the infinite address space matching (0|1)∗ into disjoint infinite sub-

spaces with each infinite subspace assigned to one node. The (sub)space is unbounded

because, as we mentioned before, there is no limit upon the length of a label, and since the

(sub)space is unbounded we can meet any amount of address demand of a node. Suppose the

address demand of u is 28 and lab.u =001. We then assign {001 0...00
︸ ︷︷ ︸

8

, 001 0...01
︸ ︷︷ ︸

8

, ..., 001 1...11
︸ ︷︷ ︸

8

}

to u.

We create other addressing schemes by randomly picking a subset of nodes U and ran-

domly reassigning a distinct label in L(U) to each node in U , thus making address assign-

ments partially or completely not service-provider oriented. More precisely, for the 10%

case we randomly pick 10% of nodes denoted by U , get their labels denoted by L(U), and

randomly reassign a unique label in L(U) to each node in U . By doing so we get a labeled

graph denoted by G10%. For the 20% case we use G10% as the input graph instead of the

original graph or G0%. Then we randomly pick another 10% of nodes out of those nodes

whose labels have not been switched yet instead of V (G0%). We denote this node set by

U , get their labels denoted by L(U), and randomly reassign a unique label in L(U) to each

node in U . By doing so we get a labeled graph denoted by G20%. We can proceed in this

way until we get G50%. After that, for the 60%, 70%, 80%, 90% and 100% case we use G50%

as the input graph. Then we randomly pick another 10%, 20%, 30%, 40%, and 50% of nodes

out of those nodes whose labels have not been switched yet instead of V (G0%). We denote

the node set again by U , get their labels denoted by L(U), and randomly reassign a unique

label in L(U) to each node in U . By doing so we get labeled graphs denoted by G60%, G70%,

G80%, G90% and G100% (a totally random labeling of the input AS-level graph).
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Figure 7.1: # of bits/# of labels of the last 3th steps of the contraction

The experiment results are averaged over 10 runs, each of which corresponds to a distinct

random seed for picking a subset of nodes and switching their labels.

As we have expected, the abstract locality metric keeps increasing when more randomness

is introduced by different address schemes applied to the same input graph. We argued earlier

that purely using the number of labels/number of bits at the end of the contraction process

is not sufficient to measure locality, and introducing some history information related to

the contraction process (i.e., the number of labels/the number of bits at each of the last k

steps where k > 1) seems necessary in capturing the hierarchical structure of the labeling.

Though, from Figure 7.1, we observe that all lines keep strictly increasing, we still use the

sum of the number of labels/the number of bits for the last 3 steps of our contraction process

in the following discussions.
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7.2 Study on Internet Case

We will now show how efficient the current Internet’s addressing scheme is by applying the

abstract locality metric. The main results are shown in Figure 7.2 after applying Equa-

tion 6.1 and Equation 6.2. In Figure 7.2, for each year, we also calculate the upper bound

and lower bound for our abstract locality metric. The upper bound is calculated in the

following way: if for the given common prefix there exist only one cluster then we merge

it; otherwise, we do nothing. The lower bound is calculated in the following way: if for the

given common prefix there exist only one cluster then we merge it; otherwise, we merge all

of them. By doing so some nodes may have the same labels in the intermediate or final

graphs. Note, in order to visualize the lower bound line, the y-axis is the logarithm of the

number of labels and the logarithm of the number of bits respectively.
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Figure 7.2: # of bits/# of labels of the last 3 steps of the contraction with UB/LB

We see from Figure 7.2 that current Internet address scheme is far from optimal in terms

of locality and redundancy (in best cases, our metric is equal to 1×21+2×22+3×23 = 34

bits and 21 + 22 + 23 = 14 labels of the last 3 steps of our contraction process).

The locality of current address scheme gets a little bit better, though with small fluc-

tuations. This is due to the wider deployment of CIDR and the gradual withdrawals of

pre-CIDR prefixes. In addition, the practice of IPv4 address allocation and assignment does

not change much over time, though there has been a slight change in the allocation policy

of both ARIN and RIPE NCC by shrinking the “window” of demonstrated need from 12

months to 3 months. Moreover, with more edges introduced over time, nodes with struc-

turally similar labels become closer to each other.

However, our abstract locality metric is not negatively affected by the increase in multi-

homing practice as long as a multihomed AS is assigned out of one of its service providers’

address space. Other engineering practices, such as load-balancing by fragmenting one single
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prefix, also have no negative impact upon our abstract locality metric, though redundancy

contained in labels is increased.

7.3 Study on the Compact Routing Case

As mentioned in Section 3.7, name-dependent compact routing scheme assign the “name"

of each node from scratch in a topology-aware way, so as to make the routing state (mainly

packet header and routing table) logarithmic in the network size and the path stretch

bounded by some small constant. The main goal of this section is to study the efficiency

of the “naming" mechanisms of name-dependent compact routing schemes in terms of our

abstract metric. Since the name-dependent compact routing mechanism proposed by Tho-

rup and Zwick [TZ01]—TZ Stretch-3 CR for short—is the basis of other name-dependent

compact routing mechanisms, we are only focused on the study of the “naming" mechanism

for the TZ Stretch-3 CR scheme.

Let’s reiterate how the “name" of each node is assigned in the TZ Stretch-3 CR scheme:

a set of landmark nodes denoted by A of size at most 2s log n (where s is parameter) is

randomly selected in an input graph G = (V,E); for each w ∈ V , define cent(w) to be the

node in A that is closest to w than to any other node in A; for each w ∈ V , define CA(w)

to be the set of nodes each of which is closer to w than to its center in A, and |CA(w)| ≤
4|V |
s

; each node w ∈ V is assigned a label label(w) = (w, cent(w), port(cent(w), w)), where

port(cent(w), w) gives the port number used by cent(w) to route the packet towards w.

We change the “names" of each node w into label(w) = (cent(w), port(cent(w), w), w) in

order to keep using the length of the common prefix as the measurement of the similarity

between any two “names". We let s = (n log n)
1

2 and according to Corollary 3.3 in [TZ01]

we have |A| ≤ 2(n log n)
1

2 and |CA(w)| ≤ 4(n log n)
1

2 for each w ∈ V . After we label each

node in this manner, we apply our abstract locality metric to this labeled graph. We then

compare the computed value of our metric with that of the Internet address scheme. Here

we are only focused upon year 2010. The results are shown in Table 7.1.

Table 7.1: Internet addressing vs addressing of TZ Stretch-3 CR

Address Scheme For TZ Stretch-3
CR

For the current
Internet

# of labels for the last 3 steps 1.17 × 104 2.24 × 105

# of bits the last 3 steps 4.20 × 104 4.72 × 106

As expected, the locality of the address scheme of the TZ stretch-3 CR is much better
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than that of the Internet address scheme in terms of our abstract locality metric. It is not

surprising since “names" used by the TZ stretch-3 CR are assigned in the topology-aware

manner. They do not have the issues like legacy class C networks that make the Internet

less efficient.

7.4 Comparison with BGP-based Locality Metric

Our BGP-based locality metric tells us that the locality of the Internet address scheme keeps

worsening till year 2007, and then becomes a little bit better. Our abstract locality metric

also tells us that the locality of the Internet address scheme gets a little bit better over the

years.
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8 | Conclusion and Future Work

This thesis is a first step toward quantitative assessment of the locality of address assignment

schemes applied to AS-level graphs of different sizes. We defined a cost measure, TCost , in

terms of the control-plane overhead required to advertize prefixes using BGP. Our metric is

designed as a proxy for the benefits of locality of addressing in both the control and data

plane. To investigate and quantify the degree of optimality of current prefix assignments,

we developed several methods of reassigning prefixes while preserving semantics. We are

able to reduce TCost/link by 25% to 210%, depending on the strictness of the definition

of semantic equivalence. Though by our prefix reassignment we can save some bits, we

still cannot achieve logarithmic scaling that allows for “infinite scaling.” Thus hierarchical

addressing only helps us in a limited way. Finally, we propose another metrics that in

some sense quantifies the efficiency of the labeling and is independent of forwarding/routing

mechanisms. We validate the effectiveness of the metric by applying it to a series of locality-

decreasing address schemes with variable-length labels assigned from scratch given the same

input AS-level graph. After that we apply the metric to the current Internet address scheme

across years. We find that the current Internet address scheme is far from optimal in terms

of locality and redundancy. Moreover, we find that the normalized number of labels and

the normalized number of bits for the last 3 steps of our contraction process get a little bit

better over the years. We also study the locality of the address scheme for the TZ stretch-3

compact routing mechanism, and find that, as we expected, its locality is far better than

that of the Internet.

In future work, we hope to extend our study to examine the locality of other address

schemes (for example, the IPv6 address scheme). Though currently less than 1% of the

Internet users prefer IPv6, a four-fold increase in the deployment of IPv6 in the Internet is

witnessed from August 2011 to August 2012 [Hus12]. Some work [kc11] has been done to

survey available data that are capable of limited tracking of IPv6 deployment and additional

candidates of data that would support better tracking. We are also interested in how IPv4

address transfer markets will affect the locality of the current Internet address scheme.
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